Chapter 3

Elastostatics

3.1 Introduction

In this chapter the application of boundary elements to study linear elastostatics
problems is presented. The presentation is based on the direct approach and
follows the notation initiated by Alarcon, Brebbia and Dominguez in references
(1] and [6], and which is consistent with the one used in previous chapters.
Reference [1] gave a comprehensive treatment of higher order elements.

The direct formulation of boundary elements for elastostatics was presented
by Rizzo in 1967 [2] following the work of Jaswon (see Chapter 2). The basic
integral representation known as Somigliana’s identity [3] was taken to the
boundary which was then discretized into constant elements in a way similar to
that previously used for potential problems in some of the papers presented in
Chapter 2. Cruse and Rizzo [4] and Cruse [5] extended the formulation to
elastodynamics.

The chapter starts with a review of the basic equations of linear elastostatics
which are then used to generate the required boundary integrals. Another section
deals with the fundamental solutions and explains how they can be obtained by
integration of the basic governing equations. This section formulates these solutions
starting with the Galerkin vector, and in this way provides a tool for obtaining
fundamental solutions in many other problems.

Section 5 discusses the discretization of the body into elements and sets up the
methodology to create the boundary element equations. Topics such as integration,
rigid body motion and boundary conditions are contained in this section.

An important aspect of boundary elements is the correct consideration of body
forces, which whenever possible should be taken to the boundary. A special section
is dedicated to the treatment of these forces and how the original domain integrals
can be transformed into boundary integrals, using the Galerkin vectors already
defined in the part on fundamental solution.

Many engineering problems are inhomogeneous and it is then necessary to
divide the body into subregions with different properties. Sometimes the subdivision
is preferred for simple computational or modelling reasons. The idea is important
in boundary element applications and it is discussed in detail in Section 3.7.

Although the direct formulation is usually associated with boundary elements,
it may be convenient in certain cases to apply the so called indirect formulation.
Section 3.8 demonstrates how these formulations can be obtained as special cases
of the more general direct approach.

Section 3.9 shows how under certain conditions of geometrical and boundary
conditions symmetry, a general three dimensional body can be transformed into
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an axisymmetric problem, with considerable savings in computer and modelling
time.

The final section in this chapter deals with the case of orthotropic and
anisotropic bodies for which the fundamental solution is more difficult to formulate
than for isotropic elastostatics. The section shows how these solutions can be
found and sets the basis for changing isotropic boundary element codes into more
general anisotropic programs.

3.2 Basic Equations of Linear Elastostatics

In what follows we will restrict our discussions to linear elasticity, i.e. problems
for which one assumes that the material behaves linearly and the changes in
orientation of the body in the deformed state are negligible. The latter assumption
leads to linear strain displacement relations and also allows the equilibrium
equations to be referred to the undeformed geometry.

We will use the indicial notation throughout in addition to the matrix notation
as otherwise the formulae will become difficuit to write.

In solid mechanics one needs to consider the forces or state of stress in the
body and the deformations or state of strain. Both states are interrelated by
applying the material behaviour or constitutive equations, which establish the
relationship between stresses and strains.

State of Stress

Let us define the state of stress at a point in terms of stress components (figure
3.1). In principle one has 9 different components which can be grouped together
in a stress tensor, i.e.

0y 012 013
031 033 033 (3.1)
03y O3 033

These components are not all independent but are related through the equilibrium
equations, which are of two types, (i) moment equations and (ii) direct components
equations.

The moment equilibrium equation can be written by taking moments of the
stress components with respect to a point in the differential element and in the
limit produce the so called complementary shear relationships, i.e.

021 =0y2; 03y =033, 032 =033 (3.2)

Equilibrium of the forces in the x,;, x, and x5 directions produced the well
known force equilibrium equations which need to be satisfied throughout the
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domain (i.e. interior of the body), i.e.

do Jo Jo
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-+ bl = 0
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Notation for surface forces, stresses and displacements

where b; are the body forces components.



156 Chapter 3  Elastostatics

In order to write these equations in a more compact manner we will use indicial
notation. The set of equations in (3.3) can be written simply as

00
_alj+ bi: 0 in Q (34)
0x;
or
O-ij,j+bi:0

where i=1, 2, 3 and j=1, 2, 3. Internal indices such as j vary first and then the

iindices which produce three different equations. The comma indicates derivative.
The stress components are projected into a differential of the boundary dI’

and produce surface force intensities or tractions which are denoted by p; such that

P1 =010+ 0430 + 0430,
P2 =032 0y + 030, + 0330, (3.5)
P3 = 0310 + G33N; + 0331,

where n n,n, are the direction cosines of the outward normal » with respect to
the x,x,x; axis, l.e.

ny =cos(n, x,); n, =cos(n, x,); ny = cos(n, x;) (3.6)
Equations (3.5) can also be written in a compact form in indicial notation,

pi=0yh; onT 3.7
where i=1,2,3and j=1, 2, 3.
The tractions are assumed to be given on the I, part of the boundary and

they are the ‘natural’ boundary conditions for this problem. Hence,

Pr=D
p>=Dpz on I, (3.8)
P3=D3

These conditions imply that the applied tractions p; have to be in equilibrium
with the traction components obtained from the internal stresses at the boundary,
ie.

pi=0n;=p; on I, (39)
State of Strain

The deformations of the boundary are functions of the displacements, which
have the components, ¥; u, u; at every point. They produce strains which for
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linear cases are

Direct Strains

ou u ou
B =) B = ey = (3.10)
0x, 0x5

0x,

Shear Strains

1 (6u1 6u2> 1(6141 6u3> 1(6142 8u3>
=\t ) ei3=glo—+t-— €3=\ gt
2\0x, 0x, 2\0x; 0x, 2\0xy 0x,

These expressions can also be written in indicial notation

1/0u; Oou;
= —+ 3.11
i 2<6xj 8x,-> 3.10)

where i=1, 2,3 and j=1, 2, 3. Another way of expressing (3.11) is as follows,
&y = 3t ; + u;)

where the comma indicates derivatives,
Sometimes the state of strain is defined using the strain components arranged
in a tensor (the strain tensor), i.e.

(3.12)

€31 €32 €33
where &, = €,,; €31 = €13} €32 = £33,
It is simpler to apply boundary conditions in terms of displacements rather
than in function of strains. Hence on I} the following ‘essentials’ conditions can
be defined

u1=u1; u2:a2; “3=ﬁ3 on rl (3.13)

or
ui=i; j=1,2,3 onT,

where i; are the prescribed values. Note that the total I' surface of the boundary
is equal to I}, + I5.

Constitutive Relationships

The states of stress and strains in a body are related throughout the strain-stress

or constitutive equations for the material. For a linearly elastic isotropic
material one can define two constants, called Lamé’s constants, A and u which
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are associated with the volumetric and shear components. Then the stress-strain
relationship can be expressed as

Uij = ).5ij6kk + 2,u8,-j (314)
where 8;; is the Kronecker delta (=1 for i = and = 0 for i # j). Notice that g,

has only internal indexes and hence it implies a sum of the three direct strain
components, and because of that is called the volumetric strain, i.e.

ekk=811+822+833 (315)

The inverse of (3.14) can be written as

38, !
8y = — o Ot o 0y (3.16)
2uGi+2m) " Ty

where o, =0,, + 0,5, + 033.
The Lamé’s constant can be expressed in terms of the more familiar shear
modulus G, Modulus of Elasticity E and Poisson’s ratio v by the following formulae,

E E
§=G = S R (3.17)
2(1 +v) (1 +v)(1—2v)
The strain and stress in terms of E and v can be written as
v 14v
&= —Eakkéij‘*’T Gij (3.18)
and
E y
Ul": _-518 +81 3-]9
! (1+v)[(1—2v) i ] G19)

For some particular problems (specially in soil mechanics) one may prefer to
use the bulk modulus K.
In these cases one defines the deviatoric stress and strain components

01 =0;;— 300 (3.20)

€= &;— 30, (3.21)
Thus the constitutive equations are expressed as

o;; = 2Gej;, p=—Key (3.22)
p is the mean pressure,

p=—"T (3.23)

3
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and
K=4+3G=E/(3(1 —2v)) (3.24)

In general for isotropic elastic materials all material constants can be expressed
in function of two independent constants.

The equations of equilibrium (3), strain-displacement relations (6) and consti-
tutive equations (6) give a complete system of equations from which one can
determine the components of stress (6), displacements (3) and strains (6).

Initial Stresses or Strains

In many problems one can have initial state of stress or strain due to temperature
or other causes. Consider an initial strain for instance. In this case the elastic
strain components are obtained by subtracting from the total strain those initial
strains, 1.e.

€5, = &} — &5 (3.25)
where &f; indicates the elastic components, &;; the total and &; the initial strains.
One can now define the stresses using the elastic strains, i.e.
015 = A0 — &) + 2u(ei; — €5)) (3.26)
or

05 = (408 + 2pei;) — (A0; 60 + 2pes)
=0} + 03 (3.27)
The of; components are called initial stresses and are defined as,
G?j = — (1‘1‘.5“8;:,‘ 4+ 2”8:)]) (328)
It will be seen later on how the initial stress or strain components can be
analysed and included in the boundary integral formulation.

Notice that if the initial strains are due to temperature and the material is
thermally isotropic, one can write

e =af (3.29)

where a is the dilatation coefficient and 6 the difference in temperature. The values
of of; are given by

1
o= _—2u< i )wau (3.30)
1—2v :
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3.3 Fundamental Solutions

The formulation of the boundary integral equations for elastostatics to be
described in section 3.4 requires the knowledge of the solution of the elastic
problems with the same material properties as the body under consideration but
corresponding to an infinite domain loaded with a concentrated unit point load.
This is the fundamental solution of elastostatics and is due to Kelvin.

If the Equilibrium equations (3.4) are expressed in terms of displacements
components one obtains Navier’s equations, i.e. consider (3.4)

y,;+ b =0 (3.31)

Substitute above the stress strain relationships (3.19), i.e.
v
O'U=2ﬂ ijz—‘;aljgmm"'g” (3'32)

and the strain displacement equation (3.11)
B,j=%(u,,j+uj,,) ‘ (333)

The results are the Navier equations or equilibrium equations in terms of
displacements, that is

1 1
(1—:2;>uj,j,+u:,jj+;bl=0 (3.34)

Kelvin solution is obtained from equation (3.34) when a unit concentrated load
is applied at a point ‘i’ in the direction of the unit vector ¢; , i.e.

by = N (3.35)

An easy way of computing the fundamental solution is using the representation
of the displacement in terms of Galerkin’s vector. One assumes a vector G from
which the displacement components may be obtained as

| :
Uj=Gjmm A=) G, jm . (3.36)

Substitution of equations (3.35) and (3.36) into equation (3.34) gives

1.
Gt mmjj +; A'g=0 (3.37)
or

1.
V2(V2G)) + - A, =0 (3.38)
u
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This equation may be written for three-dimensional or two-dimensional plane
strain problems as

|
VE(F)+— Ale;=0 (3.39)
U

where
F,= VG, (3.40)

Notice that equation (3.39) is similar to (2.9) from which the fundamental solution
for potential problems was obtained. Solution of equation (3.39) gives

= e (3.41)

F=lin <1> e (3.42)

for two-dimensions. Substitution of equations (3.41) or (3.42) into (3.40) gives

V3G, =

e 3.43
pr— (3.43)

for three-dimensions and

1 1
viG = 1n(~>e, (3.44)
2nu r

for two-dimensions, which solutions are

G =G-¢ (3.45)
where

G=——r (3.46)

for three-dimensions and

- r? ln<1> (3.47)
8nu r

for two dimensions. Taking each load as independent, one can write,
Gy = Goy, (3.48)

where Gy, is the k component of the Galerkin’s vector at any point when a unit
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load is applied at ‘i’ in the | direction. The displacement at any point in the domain
for the point load considering each direction as independent is written

ut = ute, (3.49)

where uf represents the displacement at any point in the k direction when a unit
load is applied at i’ in the ! direction.
In accordance with the definition of equation (3.36) one can now write,

1
u?;c = le,mm - 2—(1?\’_) Glm,km (350)

Substituting equations (3.48) and (3.46) into (3.50) one obtains

i
* 3 —4v)o, + 3.51
U 167a(1 — v)r [( VIO + 7ir] ( )

for three dimensional problems. Notice that

V,z=—al; rk=—?i (3.52)
0x, 0%,

These are the ratios between the projection of r in the x,x,x5 directions, which
we can call r;, r, and r; and the length of r (see figure 3.3); i.e.

n

=2 (3.53)
.

For the two dimensional plane strain problem the fundamental solution in
terms of displacements is obtained by substituting equations (3.48) and (3.47) into
(3.50), which gives

1 1
u;l;‘ = [(3 aand 4V) ln — 6"( + r,,r,k] (3.54)
8au(l —v) r

Notice that when Laplace’s operator is applied to the Galerkin‘s vector given by
equation (3.47) the computed value of F; differs from that of equation (3.42) in a
constant, the resulting value being also the solution of (3.39). Any value of G
different from that given by (3.47) in r? terms may also be used and in fact one
of those fundamental solutions of the biharmonic equation for two dimensions
was used in Chapter 2 (equation (2.110)). These values produce fundamental
solution displacements u* identical to equation (3.54) except for a rigid body
motion that is neglected because it does not change the solution of the problem as
can be seen below.
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Stresses at any internal point can be written using the strain-displacement
relations (3.11) and the strain-stress equation (3.19). They can be expressed as,

oFi=Ske (3.55)

where the kernel S, ; has been obtained from u} and will be written in full later on.
The tractions or surface forces on the I' boundary with normal /i can be written
through (3.55) and equation (3.9) as,

pi = pie (3.56)
where the traction components for three dimensional case are

1

*k —_—
P (L — )2

[% L(L —2v)0y + 3ryrid + (1 — 2v)(myry, — n,‘r,,):l (3.57)

n, and n, are the direction cosines of the normal with respect to x, and x,. dr/on
is the derivative of the distance vector r with respect to the normal.
For 2 dimensional plane strain problems one has

1

% —_—
Pl = T = vy

[gﬁ [t —=2v)0y + 2ryr, ]+ (1 — 2v)(mr, — nkr,,]] (3.58)

Example 3.1

Consider for instance one component of the Galerkin vector, say G,, for the case
of two dimensional elasticity. Substituting it into equation (3.36) will produce the
following two displacement components (which correspond to a force acting in
the direction I=1), i.e.

2
U, = VzGl - 1 {——a Gl}
2(1 —v) { ox? (a)

2(1 — v) 0x,0x,

U, = —

One can now substitute these components into the Navier equations (3.34) which
are expanded into

Vu +( : ){azuH— Gy }+§e—-0
PP\t —av/ Lox?  oxgex,) ! (b)

V2u +< : ){ oy +62“2}=0
2T\ =2/ loxox,  ox?
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Figure 3.2 Geometrical interpretation of the components of the fundamental
solution
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This gives for the first equation
202 A’
V(V3G,)+—e, =0 (©)
©

while the second is identically satisfied.
The reader can verify that the G, component will behave in a similar way.

3.4 Boundary Integral Formulation

The governing integral equations for elastostatics will be deduced using consider-
ations of weighted residual. The fact that some terms which are assumed to be
approximate may not be so does not detract from the use of these concepts as a
general way of producing the required statement. The concepts are very similar
to those used in virtual work.

Consider first that one desires to minimize the errors involved in the numerical
approximation of the governing equations of elastostatics, i.e.

akj.j+bk:0 in Q (359)
which usually have to satisfy the following conditions

(i) Essential or displacement conditions
Uy, = 1 on I (3.60)
(ii) Natural or traction conditions
P =0y =Py in I (3.61)
Consider first that we are only interested in minimizing (3.59). To this end one

can weight each of these equations by displacement type functions u} and
orthogonalize the product, i.e.

§ o4+ bur dQ=0 (3.62)
Q

If we carry out the integration by parts on the first term of this equation
and group the corresponding terms together, one finds the following expression

— [ oot dQ + [ bt dQ = — | pu dT (3.63)
Q Q r

Integrating by parts one finds the adjoint of the equation (3.59), i.e.

§ o w dQ + § b dQ = — | puf dT + | pfu, dU (3.64)
Q Q r r
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This expression corresponds to Betti’s reciprocal theorem (notice that o}f; ; = — bf)
which is sometimes used as the starting point for the boundary integral formulation.

Notice that the two terms on the right hand side are integrals on the I' surface
of the body. Let us now consider that the boundary is divided into two parts I
and I, and on each of them the boundary conditions (3.60) and (3.61) apply. Hence
on can write (3.64)

[ o dQ+ [ b dQ = — | puf dT — | pui dT
Q o I Iz
+ [ apFdl + [ wppdl (3.65)
I I

The bars represent known values of displacements u, and tractions p, components.
One can now integrate again by parts trying to return to equation (3.62) but we
will find that the resulting expression is slightly different as we have now imposed
boundary conditions in I, andl;. Integrating by parts twice the first integral in
(3.65) one obtains,

[ (@4 + bouf dQ = | (p,— P AU + | (i — u)pf T (3.66)
I,

Q r:

This expression is a generalized statement that can be used to obtain the boundary
integral equations. Having established this starting principle one can now return
to expression (3.65) and use as weighting functions the fundamental solution
presented in 3.3, which was obtained for a point load b, = A’along the direction
of the unit vector e, i.c.

O'?;-vj + Aiel = 0 (367)
The fundamental solution may be written as before, i.e.

uf =uke
k 1K€ (3.68)

* _ pk
Pi = Pi€i

where u, pit are k components of displacements and tractions due to a unit point
load in the ! direction. The first integral in (3.65) for a particular direction e, of
the unit load becomes

;; o Uy Q= Sj) o iy dQ = — gj, Aluje, dQ = —ule, (3.69)

where u! represents the [ component of the displacement at the point i of application
of the load.

Equation (3.65) can now be written to represent the three separate components
of the displacement at i by taking the three directions of the point load at 4’
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Figure 3.3 Interpretation of the components of the distance vector 7
independently, i.e.
ul+ | pEi dU+ | pu, dT
F1 r;
= | up, dU + | u}p, dU + [ ufb, dQ (3.70)
Iy r; Q

Notice that when one applies a unit point load along a particular direction ‘P,
the tractions and displacements at any point in the domain have components
along the three or two directions (equations (3.68), and (3.51) to (3.58)) while
terms of the type o,; ; only are different from zero along the direction of the load.
This leads to the fact that for a given direction ¢’ at the point the first term of
{(3.65) only produces displacements along the direction of the load (first term of
(3.70)). The rest of the terms however include products for all the components.

Equation (3.70) can be written in a more compact way if one considers the two
parts of the boundary together (ie. I'=1I, +I},) and applies the boundary
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conditions at a later stage. In this case (3.70) becomes

ub + [ phu, dU = [ ufip, dT" + [ ulb, dQ (3.71)
r I Q

This equation is known as Somigliana’s identity and gives the value of the
displacements at any internal points'in terms of the boundary values u, and p,,
the forces throughout the domain and the known fundamental solution. Equation
(3.71) is valid for any particular point ‘i’ where the forces are applied.

Boundary Points

Somigliana’s identity gives the displacement at any internal point once u, and p;
are known at every boundary point and consequently only when the boundary
value problem has been solved the values at the internal points can be
calculated. However, since equation (3.71) is valid for every point in Q
including I, a boundary integral expression can be obtained by taking (3.71) to
the boundary. This expression is applied at different points on the boundary to
produce a system of equations which once solved give the boundary values.

When ‘i’ is taken to the boundary, however, the integrals have a singularity
and one needs to analyse this behaviour in the same way as it was done in
Chapter 2, section 2.2 for potential problems. If we consider that the boundary
is smooth at ‘i’ one can supplement it by a hemisphere (figure 3.4) with centre
at ‘7’ and a small radius € which will afterwards be taken to the limit, i.e.e — 0.

There are two types of boundary integrals in equation (3.71). Consider first
the one on the right hand side and write it in function of I'; surface of the
hemisphere, i.e.

f ufp, dT =lim { [ dl"} + lim{ | utp, dl"} (3.72)
r 0,

e+0 \r-r,

The first integral on the right hand side of (3.72) will simply become an integral
on the whole boundary I when & — 0. The second integral can be written as,

P lim{ fug dr} (3.73)

had] T,

Noticing that the fundamental solution is of order 1/e and the surface integral in
(3.73) will produce a €%, one can conclude that (3.73) will tend to zero as ¢ — 0, i.e.

£~ 0

(
img fu;',;dl“}so (3.74)
r’

In other words the integral investigated is not affected by the singularity at ‘’.
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The left hand side integral in (3.71) however behaves differently. If one writes
it as

| pu, dT = lim { | phw dl“} + hm{ [ P, dl“} (3.75)

r e=0 \r-r,

one can see that the limit of the last integral can be written as

lim{j pru, dl“} =ul lim{f pE dl“} (3.76)

£=0 r, e 0 r,

The pj values are now of 1/¢% order while the terms resulting from integration
over the surface of the hemisphere are of order ¢*. Hence the integral (3.76) does
not vanish when ¢ — 0 but produces a free term. By substituting the values of pj
as given in equation (3.57) and integrating over I, one finds

lim{ [ dl“} = —15, (3.77)

£-0 r,

Hence the left hand side integral (3.75) can be written in the limit as

l,[l’?;c“k dr' — 251k“k jplkuk dr’ — zuf (3.78)

where the integral on I' is defined in the sense of the Cauchy Principal value. This
is demonstrated in detail in example 3.2 where the different terms of the
fundamental solution are integrated one by one.

Therefore for boundary points equation (3.71) transforms into

chtl + | pru, dU = [ up, dT +  ub, dQ (3.79)
r I Q

where the integrals are in the sense of Cauchy principal value and where I is smooth
at ‘", ¢l =+3, When ‘7’ is at a point where the boundary is not smooth, the value of
the mtegrals in equation (3.78) give different results and it is generally difficult to
obtain a general expression in three dimensions.

Fortunately, explicit calculations of this value are not usually necessary as they
can be obtained using rigid body motions as will be shown in section 3.5.

Boundary equation (3.79) permits to solve the general boundary value problem
of elastostatics. If displacements are known over the whole boundary, equation
(3.79) produces an integral equation of the first kind, if tractions are known over all
the boundary an integral equation of the second kind is obtained and finally a
combination of both types of boundary conditions results in a mixed integral
equation.
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Example 3.2

Consider the behaviour of the two types of integrals in (3.71) for the case of the
point ‘" being on the smooth boundary I' surrounded by a hemisphere as shown
in figure 3.4, In the limit the radius of the hemisphere will tend to zero.

The first type of integral is as follows.

I U pfi A" = lim { | wok dr} + lim {j WPk dr} (@)

e~0 (I'-T. e=0 \I.

Consider the I, integral only, i.e.

1=lim{5 w, Pl dr}

e~0 (I
e»0 L an 0x; 0%,
or 1
-(1-2 - — s dr b
( v){ax, e Ox, n,}] 8n(1—v)r2} ®)

Note that e =r. Consider figure 3.5 where for simplicity a spherical system of
coordinates is used. For this particular case the second term in equation (3.57)
will disappear as,

or or or or  Or Or
- Mp—— = — = — =0 ©)
0x, 0x,, 0x, 0x, 0x, 0x,

Hence one only needs to consider the first term-in the integral, that is,

I:lim{ juk {1-2v)5,k+36’ ar}—ﬂ—} d)
£~0 0x; 0%, ) 8m(1 — v)r?

Note that dr/on = 1.
This can be expanded taking into account the geometric relationships shown
in figure 3.5, for instance when /=1

[ =lim {— [ {ui(1 —2v) + 3ulee, + 3ubeye,
e~0 r,
) infd
+ 3u'3ele3}-sm o d¢}

8n(l —v)
The e; are unit vectors in the x; direction (see figure 3.5) such that

o
e:=n, = —— = —

i i
ox; r
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Surface I';

All other surfaces
are I'—T,

point i

Figure 3.4 Full boundary surface I, assumed hemispherical for integration
purposes

X3

rcosfi=r3

/ rp=rsinfl sing 4

x

Figure 3.5 Geometry definitions

After integration we find that some of the integrals are zero and the final result is,

=L [(1 —2v)2n + 21w, = _4 =)

P 1
81 —v) sl—y) 1 " @

u



172 Chapter 3  Elastostatics

The same can be shown to apply for / = 2 and I = 3. This result can then be written
as,

i

lim {5 U D3k dl”} = -% ()

e—0 (I

The integral
{ Pt dT (b)
r

can also be written

Rl

T

patf T + | ptf dT (i)
¢ L.

but it can be easily shown that

lim | puuf dT" =0 G)

e—0 I,

and therefore this integral does not produce any new term.
Hence the final expression for the integral on a smooth boundary is,

Sub + [ wpl dU = [ pou U + [ bouf; dQ k)
r r Q

3.5 Boundary Element Formulation

In order to solve the integral equation numerically, the boundary will be
discretized into a series of elements over which displacements and tractions are
written in terms of their values at a series of nodal points. Writing the
discretized form of (3.79) for every nodal point, a system of linear algebraic
equations is obtained. Once the boundary conditions are applied the system can
be solved to obtain all the unknown values and consequently an approximate
solution to the boundary value problem is obtained.

It is now more convenient to work with matrices rather than carry on with the
indicial notation. To this effect, one can start by defining the » and p functions
which apply over each element ‘/°, i.e.

u = ou’ : (3.80)
and
p = Dp’ (3.81)

where u’/ and p’ are the element nodal displacements and tractions, of dimensions
3 x Q for three dimensions and 2 x Q for two dimensions, Q being the number of



3.5. Boundary Flement Formulation 173

nodes on the element. u and p are the displacements and tractions at any point
on the boundary I',, i.e.

Dy Uy
P=4DP:); u={u, (3.82)
P3 us

The interpolation function matrix ® is a 3 x 3Q (or 2 x 2Q two dimensions) array
of shape functions, i.e.

¢, 0 0 ¢, 0 O ... ¢ O O

®=|0 ¢, 0 0 ¢, 0 ... 0 ¢ O

0 0 ¢, 0 0 ¢, ... 0 0 ¢
=[¢, ¢ ... ] (3.83)

These functions are similar to the standard type function discussed in section
2.7 (see figure 3.6). They can also be discontinuous.
Notice that the body forces at any point on the Q domain can be expressed in
vector form in function of the three components, i.e.
by

b=1{ b, (3.84)

The fundamental solution coefficients can be expressed as,

£ 3 * * . .
[ piy Pi: PYis matrix whose coefficients, p¥,

pt=1|pt pt, ot |= O the tractions in k direction (3.85)
due to a unit force at ‘i’ acting
L P35 3 PYs in the ‘I’ direction

[ uf; uf, uls] matrix whose coefficients uj; are
the displacements in the ‘k’ direction (3.86)
due to a unit force at ‘i’ acting on

[ uf, uf, ul; the ‘I’ directon

*
=| Uzy Uzy U3 | =

With this notation equation (3.79) valid for each i point can be rewritten as follows,

cu + | p*adl = [ u*p dT" + { u*b dQ (3.87)
r r Q

where ¢’ =1 for smooth boundary. Otherwise it will be a 3 x 3 (or 2 x 2 in two
dimensions) array.
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(c)

Figure 3.6 Three-dimensional body divided into (a) constant boundary elements,
{(b) linear boundary elements and (c) quadratic boundary elements
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Notice that the Cartesian coordinates of the boundary may also be written in
terms of nodal coordinates to define curved elements. If this is the case we will
need to transform from one to another system and this transformation will involve
introducing a Jacobian as it was shown in section 2.7. We will discuss this in what

follows.
Consider now that we substitute the above interpolation functions into

equation (3.87) and discretize the boundary obtaining the following equation for

a nodal point.
NE

NE M
cul + Y {[ p*® dl"}uj: Y {j ur® dr}pbr Y {j u*b dQ} (3.88)

ji=1 (r; =1 (ry s=1 Qs
Note that summation for j =1 to NE indicates summation over all the NE
elements on the surface and I'; is the surface of a j element. v and p; are the
nodal displacement and tractions in the element *°.

Notice that we have considered that the domain is divided into M internal
cells over which the body forces integrals are to be computed. These domain
regions over which generally a numerical integration is carried out can in some
cases be avoided by taking the body force integrals to the boundary as will be
seen later.

The integrals in (3.88) are usually solved numerically, particularly if the
elements are curved, as in these cases it is then difficult to integrate them
analytically. The interpolation functions ® tend to be expressed in a
homogeneous system of coordinates such as those described in section 2.7 and
of the type drawn in figure 3.7. The coordinates need then to be transferred from

the {; system to the global x; system.

Transformation of Coordinates

The transformation of coordinates is identical to the one described in section 2.10
where two types of Jacobian were found.

(i) Volume to Volume Transformation relating derivatives in x; system to those in
the &,&,n (figure 3.7)

dQ =|J| d&, d&, dn (3.89)
(ii) Surface to Volume Transformation which produces

dI =|G| d¢, d¢, (3.90)
To compute the values of these Jacobians one needs to know the variation of
x; coordinates in function of the homogeneous system &, £,n, which are given in
function of the same interpolation functions as used for displacements and tractions

(equations (3.80) and (3.81)), i.e.
x = @x/ (3.91)

x/ are the nodal values of the coordinates over the element under consideration,
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~¥

X1
Figure 3.7 Coordinate systems for an element on a curved surface

and ¢ is the same interpolation function used for displacements and tractions as

given in equation (3.83).
Equation (3.88) can now be written as

NE
cu + ), { § p*®@|G| d¢, déz}uf
i=1 lry

NE M
= ; { rj u*®|G| d¢, déz}pj+ ; { J w*b|J| d¢, d¢, dn}

Applying numerical integration to the above formula (see Appendix A) one

(3.92)

obtains,

L. NE
cui+ Y
j=1

{kz Wk(P*d))k|G|}“j

=1

NE ( 1 )
= Z {kZ wk(l‘*(p)k|G‘}P]

i=1 =1

{Z wp(u*b*)lel} (3.93)

r=1

+

1=

5
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where | is the number of integration points on the surface elements and w, the
weight at those points. r is the number of integration points on the cells. Functions
such as (p*®), (u*®) and (u*b) have to be evaluated at the integration points.

System of Equations

Equation (3.88) or its numerical integral form (3.93) correspond to a particular
node i’ and once integrated can be written as,

N N M
dui+ Y Aiw=Y Gip/+ Y B (3.94)
j=1 j=1 s=1

where N is the number of nodes, u’ and p’ are the displacements and tractions at
node 4. The influence matrices H and G (now 3 x 3 for three dimensions and
2 x 2 in two dimensional cases) are

AY = *®, dT
;fgp ‘ (3.95)

GY=) [ u*®, dr

t Iy
where the summation extends to all the elements to which node ‘j’ belongs and ¢

is number of order of the node ‘j* within element t. For constant elements, the
summation extends only to one element, ¢t =j and @, is the identity matrix.

B* = | u*b dQ
nﬁ

Calling
HY =HY if i #j
el (3.96)
HY=HY + ¢! ifi=j
equation (3.94) for node ‘i’ becomes,
N I N N ra . M .
Hw/=Y GY’+ ) B*® (3.97)
j=1 ji=1 s=1

The contribution for all ‘i’ nodes can be written together in matrix form to
give the global system equations, i.e.

HU =GP +B (3.98)
Notice that the elements ¢’ will be a series of 3 x 3 submatrices on the diagonal

H (or 2 x 2 in two dimensional cases). The elements of these submatrices are not
simply given by the solid angle but can become very cumbersome to compute
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analytically. Fortunately this is not required as they can be found by consideration
of rigid body movement as we will see shortly.

The vectors U and P represent all the values of displacements and tractions
before applying boundary conditions. These conditions can be introduced by
rearranging the columns in H and G, passing all unknowns to a vector X on the
left hand side. This gives the final system of equations, i.e.

AX=F (3.99)

Notice that the B vector has been incorporated in F. Solving the above system
all boundary values are fully determined.

Rigid Body Considerations

As it was pointed out the diagonal submatrices H* in H include terms in H” and
¢'. Difficulties appear when trying to compute explicitly these terms particularly
at corners due to the singularity of the fundamental solution. Assuming a rigid
body displacement in the direction of one of the cartesian coordinates the traction
and body force vector must be zero and hence from (3.98)

HI‘=0 (3.100)
where 14 is a vector that for all nodes has unit displacement along the ‘g’ direction

(g=1, 2 or 3) and zero displacement in any other direction. Since (3.100) has to
be satisfied for any rigid body displacement one can write,

N
Hi=-3 HY (for j #1) (3.101)
j=1

which gives the diagonal submatrices in terms of the rest of the terms of the H
matrix.

The above considerations are strictly valid for closed domains. When dealing
with infinite or semi-infinite regions equation (3.101) must be modified. If the rigid
body displacement is prescribed for a boundless domain the integral

| p*1edr = { § p* dl“}l“ (3.102)
I, r,

over the external boundary I', at infinity will not be zero and since the tractions
p* are due to a point load, this integral must be,

Jprdl=—1 (3.103)
rl
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where 1 is the 3 x3 (or 2 x 2 in two dimensional cases) identity matrix. The
diagonal submatrices for this case are,

N
Hi=1-} HY (for j#1i) (3.104)

j=1

Internal Points

Somigliana’s identity (3.71) gives the displacement at any internal point in terms
of the boundary displacements and tractions. Considering again its integral
representation as in (3.88) one has,

u'= If {f u*d’dl‘}p"— NZE {j p*(DdF}uj
ji=1 1y =1 U5
M
+ 2 {I u*b dﬂ} (3.105)
s=1 Qs

where I is once more the surface corresponding to element j and i’ is now an
internal point. The internal point displacements in terms of the nodal displacements
and tractions can be written in the same way as (3.94), i.e.

N N M
=) G/~ Y AW + Y B* (3.106)
Jj=1 j=1 s=1
The terms GY and HY consist of integrals over the elements to which node j
belongs. Those integrals do not contain any singularity and can be easily computed
using numerical integration. Terms like B* however will contain a singularity
(notice that they are domain terms and the point i is now in the domain) and
special care should be taken when computing them numerically. Being domain
integrals however their order of singularity is one less than the integrals on the
boundary and consequently can be more accurately computed using numerical
integration formulae.
For anisotropic medium the internal stresses can be computed by differentiating
the displacements at internal points and introducing the corresponding strains into
the stress-strain relationships, i.e.

2uv ou, Ou; Ou;
=0 — A+l —+ 3.107
% 1—2v Yox “<6xj+6xi> ( )
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After carrying out the derivatives inside the integral equations one obtains,

2uv 6u,k <0u,k ouk, )}
= O —+ + = dar
1[{1 —2v ¥ 0x, # ox; 0Ox; Pr

J

2uv . Oul <6u,k oul, )}
Fi4 T s, T T b, dQ
i {1 —2v Y ox, 0x .

ZHV aplk <aptl¢ apjk)}
- LN Pix\y, dr 3.108
I{1—2v o Mok, T o) (3.108)

All derivatives are taken at the internal point under consideration, which is the
point of application of the fundamental solution. Taking the corresponding
derivatives of the fundamental solution the above equation can be written, in a
compact form, as,

= [ Dyy;pi AT — js,“,uk dr+5 Dy;b, 4Q (3.109)

r

where the third order tensor components D,;; and S;;; are

i
Dy;; = " {(1=20){dpir; + Syjri — dijrad

1
+ Brarirat powr R (3.110)

2 or
Syij = r—l; {B on L(1 = 2v)6;574 + v(Our; + Oprs) — vrar il

+ Bv(n jri + njr )
1
4om(l —v)
(3.111)
The above formulae are applicable for 2 or 3 dimensions. For the former case
a=1, =2 and y =4 and for the latter a=2, f=3 and y=35.

All the derivatives indicated by commas are taken at the boundary point x?
of figure 3.8, i.e.

+ (1= 20)Bmrir 4 ndu + ndy) — (1 4v)nk5u}

or P
r,ﬁé_% (3.112)

This derivative is equal and opposite in sign to those taken at an internal point.

Equation (3.109) is discretized by dividing the I' boundary into a summation
over all the element surfaces and assuming the corresponding interpolation
functions for u, and p,.
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Boundary point

Xz

Internal
point
l

'.i' .

Figure 3.8 Definition of derivatives required in the internal stress formulae (3.109)

The values obtained for the internal stresses using the above formulae are in
general more accurate than those computed using other numerical methods and
similar discretization. The same can be said of the internal displacements computed
through (3.105). However when the internal point is very close to the boundary
(say less than 1/4 of the smallest length of the nearest clement) because of the
peak in the fundamental solution, special numerical integration schemes have to
be used to obtain accurate stresses and displacements.

Notice also that the values of displacements at the boundary are known from
the integral equation solution. The same can not be said of the stresses since the
stress vector has more independent terms than the traction vector. The problem
will be studied in the next section.

Stresses on the Boundary

The numerical solution of the governing equations produces all the boundary
displacements and tractions. In many practical applications however the
boundary stresses rather than the tractions are required. One possibility would
be to take (3.109) to the boundary but this produces higher order singularity of a
higher order and which are more difficult to compute. For three dlmenswnal
problems, the Dy; and S;; terms contain singularities of order 1/¥* and 1/7°
respectively’ and taking equation (3.109) to the boundary requires special
consideration of how the principal values should be computed.



182 Chapter 3 Elastostatics

The simplest way of determining the stress tensor at boundary points is to compute
its components from the known boundary tractions and displacements. Let us
assume a three dimensional case and a local cartesian system of coordinates at the
boundary points where the stresses are to be computed (see figure 3.9). It is easy
to see that,

0y3 =03 =p)
043 =03, =P} (3.113)
03 =P

where the dash indicates local coordinates. In addition to the tractions a discrete
expansion for the boundary displacements over the element is also known as given
by (3.80), i.e.

v =R7®uw’ (3.114)

where R is a transformation matrix from global to local system. Four components
of the strain tensor can be computed by differentiating u’ as follows

1 (0w, ou
g;j=-< iy ”‘) Lj=1,2 (3.115)
2\0x; 0x;
X3
X

Figure 3.9 Local system of coordinates over the element
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Notice that the ¢;; will depend on the derivatives of the shape functions and the
nodal displacements. If constant elements are used, the displacement derivatives
can be computed using a finite difference approximation between adjacent nodes.

The rest of the terms of the stress tensor can now be computed from the
constitutive equations as follows,

R ’
01 =031 =2ue,

1
i =1 Doy + 2l + ve,)] (3.116)

0%y = [vo'ss + 2ules, + vely)]

-V

For two dimensional problems the procedure is analogous. Three components
of the stress tensor are obtained from the tractions, i.e.

012 =031 = P} (3.117)

o at
022 = D2

and one component of the stress tensor is computed from the surface displacements
as follows,

g, =24 (3.118)
0x}
and the last stress component is computed from
’ 1 ’ !
0y = (voha + 2pe),) (3.119)

1—v

using the stress-strain relationships corresponding to plane strain.

Traction Discontinuities at Corner Points

When a node is located at a point where the boundary is not smooth, i.c. has a
corner for two dimensional problems or corners and edges in three dimensional
cases, a discontinuity in the traction will occur at that node. This implies that if
the nodal tractions are unknown the number of equations at that node is smaller
than the number of unknowns.

In order to explain what occurs, let us consider a two dimensional corner for
simplicity (figure 3.10). When the tractions are known at both sides of the corner
node, only the two components of the nodal displacements are unknown and no
special treatment of the corner node is required. It may also happen, for any of
the two components, that the displacement and one of the tractions, either ‘before’
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uz
) I P2
> U
» 2
I
P P1
3 1

Figure 3.10 Continuous corner node

or ‘after’ the node, is known; then the other traction, ‘after’ or ‘before’ the node
will be the unknown and the problem is solved without difficulties as will be seen
in sections 4.7 and 4.8. However, when two different values (‘before’ and ‘after’
the node) of any component of the traction are unknown and only the displacement
is known a special treatment of the corner is required.

The easy way then of solving the problem is by duplicating the corner node.
The geometry of the problem is slightly modified and only two traction components
are assigned to each node (figure 3.11(a)). The problem may now be solved by the
standard procedure. The distance between the two corner nodes must be very
small and it is limited by the numerical problems that may be originated by the
existence of two sets of equations whose coefficients are very close to each other.
In practice excellent results are obtained if the distances are not too small. When
the corner node is duplicated a small gap may be left between the two nodes
(figure 3.11(a)) or a small element may be assumed between the two (figure 3.11(b)).
In the latter case, tractions over the small elements are assumed to be p, p; and
p1, p5 for nodes 2’ and 2" respectively.

Another version of the double node approach is the use of discontinuous
elements already presented for potential problems in section 2.7. This consists of
displacing inside the element the nodes that meet or that would meet at corners
or edges (figure 3.11(c)). The approach is very simple and effective and has the
added advantage that it can model better corners with high stress concentrations.
When used to model singularities — such as in fracture mechanics problems —
the results using discontinuous elements have converged well to the correct solu-
tion. The discontinuous elements formulation for two-dimensional linear elements
will be presented in section 4.6.

The problem of having more than two unknowns at a corner can also be
solved as follows. If the tractions at both sides of a corner are unknown the displace-
ments along the two elements to which the node belongs will be known. In such
a case the displacement derivatives along those elements can be obtained by
derivation of the shape functions. Since the two elements follow different directions
all the components of the strain tensor at the corner can be written in terms of
nodal displacements of those elements and the stress tensor and any traction at the
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i‘ uq
y " \(
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{a) Corner with gap

3 1 3 1
(b) Corner with small element {c) Corer with discontinuous elements

Figure 3.11 Corner tractions and displacements modelling

corner may be computed. This procedure can not be applied for corners where a
singularity of the stress tensor occurs.

3.6 Treatment of Domain Integrals and Body Force Terms

Domain integrals are important in boundary clements as they can not only
represent body or thermal forces but also a wide range of non-linear effects.

Initial Stress

Many problems produce an initial stress or strain field and in this case one needs

to differentiate between the elastic, initial and total components of those variables.

If an initial stress state exists, the elastic stresses are given by (see section 3.2)
0y =0+ 0% (3.120)

o}; represents the ‘total’ stress and of; the initial one.
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If we rewrite the starting equation (3.66), taking into consideration fundamental
solution unit forces acting in the ‘I’ direction, one can write

s[z (04, + buf, dQ = j (px — Piufi dl + I (U — w)pfi dT (3.121)
Iz I
and integrate by parts once, one obtains
Q Q | 93 r
+ [ i —u)pl dT (3.122)
I

Substituting equation (3.120) one can write,

.f bufi dQ — j Oy dQ — I 05l dQ
o ) Q
= — [ puf dl — rj patl dT + rj (i, — u)pl dT (3.123)
5% 1 1

Integrating by parts again one obtains

!j; b dQ+£arjk,juk g — i o%el dQ
=— | pu dU — | pu dU + | @i ptdl + | pdl (3.124)
I Iy Iy I

Notice that the integration by parts has been carried out on ¢} and not on
o because the former is the one related to the total displacements. Equation
(3.124) gives in more compact form, and after substituting for the fundamental
solution, the following expression

l utp, dU + sfl bl dQ — !{l ool dQ = chul + l pu, dT’ (3.125)

This demonstrates that the initial stress (and similarly for strain) field can be
treated in a similar way as a body force field, b,, although it is generally difficult
to transform the ¢° term into a boundary integral.

Body Forces

Let us study in this section how the body force term in (3.125) can be taken to
the boundary. The integral under study is

| byuk d (3.126)
Q

The integral does not include any unknown values but in order to compute it
numerically the whole domain has to be discretized into cells which represents a
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considerable difficulty and diminishes the elegance and computational efficiency
of the method. Fortunately domain integrals can be avoided in many practical

cases by reducing them to the boundary. Consider in this case that the body force
components b, can be obtained from a potential function y such that,

b= ¥ (3.127)

where the potential s is assumed to satisfy the following harmonic relationship
V%Y = K, = constant (3.128)

Then integral (3.126) can be rewritten as

f utb, dQ = [ u¥ <%> /(9]
0 0 0x,
0 oul
ZQ;g(uz’i‘//)dQ—sj;T,k‘//dQ (3.129)
X k

where derivatives by parts have been used. For the divergence theorem one can
now write

§ ub, dQ = [ utym, dT — [ —= 4 dQ (3.130)
Q r a0

k

where n, is the direction cosine of the normal to I" with respect to x, axis. In order
to take the last integral to the boundary one can write the fundamental solution
u¥ in terms of its Galerkin vector Gy in the form

1 1

mGlj'kj:VZ(le)_Z(TV) Glj,kj (3131)

*
Uy = le,jj -

where the comma indicates derivatives.
The Galerkin vector for the fundamental solution of three dimensional
elastostatics problems was given in section 3.3 and is repeated below, i.e.

1
le = rakl (3.132)
8nu

For two dimensional problems,

1 1
Gu=g— r? 1n<—> S (3.133)

nu r
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It must be pointed out that when the two-dimensional Galerkin vector is derived,
the following fundamental solution is obtained,

1 1 7-8
uk = P TR— [(3 —4v)In - O — ( 5 v)ék, + r,kr,,] (3.134)

This solution differs from the previous fundamental solution (equation (3.54))
by a constant term, which was dropped before because a rigid body motion does
not change the solution of the systems of equations. However, when body forces
exist and the Galerkin vector given by (3.133) is used to take the domain integral
to the boundary, the fundamental solution given by (3.134) must be used.

By applying (3.131) one can write the last integral in (3.130) as follows,

12 [ V2(Gy W O (3.135)

uf W dQ =
(J; lk,k‘p 20—

Finally, the Green’s theorem can be applied between the field G, , and ¢, i.e.

(fz (Gux VY — V(G ) dQ

Z.[ (G jn)) dr“}[(czk,kj‘//"j) dr (3.136)
i
Notice that the first ieft hand side integral in (3.136) is simply

{ GuiVW dQ =K, | Gy, dQ =K, | Gy dT’ (3.137)
Q Q r

Here, equation (3.136) can be written as,

_i VZ(le,k)l// Q= i (le,kw,jnj) ar

— § (Guaphm;) dT — K I[ Gy dT (3.138)
r
One can now substitute equation (3.138) into (3.135) and this into (3.130) to obtain

the expression for the body force integral in terms of boundary integrals, i.c.

1—-2v
2(1 —v)

[ uh, dQ = [ ultym, dT +
Q r

X {IJ: (le,k‘p,jnj) dr’ — i[ (le,kj‘//nj) alr — K, ! Gy, dl"}

(3.139)
We will now specialize equation (3.139) for different types of loads.
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Gravitational Loads

As an example of body forces, the case of gravitational loads will be considered
first as they are simple to express, i.e.
0
Y= —pgxs; b={ 0 }; Vi =0 (3.140)
—pg
where p is the density and g the gravitational acceleration.

The domain integral for this case can be written as

1-2
kb, dQ = — [ wkpgxyn, dT — L 2P0 (6 xsryn) dl (3.141)
) r 16mu(l —v)r

Notice that in this case the internal stress o;; will also have a body force term
which can also be taken to the boundary using the above method.

Thermoelastic Problems

The temperature changes 6 in an elastic body are equivalent to adding a body
force equal to (—76,) at each point and increasing the tractions by (y0n,) where

_ 2pa(l +v)

=i (3.142)

o is the coefficient of thermal expansion. Hence the thermoelastic problem is a
particular case of the elastostatic problem with body forces.

The boundary integral equation for a thermoelastic body without any other
types of body forces is

T £ piu, dU = § ufp, dT + 1{ uk(y0)n, dI
r

—§ uiy6, dQ (3.143)
Q

Comparing to (3.139) we can write the potential of the equivalent body forces as,
Y =—70 (3.144)

Taking into account that for steady state conduction one has V*6=0 the
domain integral in (3.143) then becomes a boundary integral and (3.143) can be
written as

1-2
=2y § (Gps O, — Gy ;) dT

cutty + Pl dU = | ufip, dT +
r r 20—v) 1
(3.145)
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The above integral equation may be discretized in the usual way. All the
functions in the last integral of equation (3.145) are known and may be easily
integrated by numerical procedures over the boundary elements on the surface.

Thermoelastic problems may also be studied considering the temperature effects
as initial strains, i.e

€5 = afd (3.146)
with the initial stresses given by
0% = — (Aelidj + 2uej) (3.147)

The values of o3 are

i
0% = —2u< aad >a95jk = 905, (3.148)

1—-2v

Substituting equation (3.148) into the initial stress term of the elastic equation
(3.125) one obtains,

—[ oot = [ 10028 d2 = | 90uf 4

= — [ y0 ,uf, dQ + | yOugtn, dT (3.149)
Q r

When equation (3.149) is substituted into (3.125) without any other type of body
force, one obtains once more equation (3.143) that after taking the domain integral
to the boundary gives (3.145). As could be expected both interpretations of thermo-
elastic effects give identical results.

3.7 Subregions in Elasticity

In the previous sections the boundary elements for homogeneous linear elastic
isotropic media have been formulated. In many cases media that are not homogeneous
but consist of several zones each one being homogeneous must be analysed. Those
problems may be studied using the above formulation of the BEM and continuity
conditions. All the boundaries of the body have to be discretized, including internal
boundaries that separate homogeneous zones within the medium. The equations
formulated for every homogeneous zone plus the displacement and traction
continuity conditions over the internal boundaries produce a system that may be
solved once the external boundary conditions are taken into account.

Consider the problem shown in figure 3.12 consisting of three zones of different
elastic materials. A two-dimensional domain has been represented for simplicity;
however, the procedure described below applies to both two and three-dimensional
problems.
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Figure 3.12 Zoned media

The following symbols are used:

r . external part of the boundary of zone Q'

ri : boundary between zones ' and ¥

v, p’ : nodal displacements and tractions at nodes on the boundary I'¥ of
zone ¥

u’/, p : nodal displacements and tractions at nodes on I'"¥ as part of zone Q'
Hi, G' : parts of the H and G matrices obtained for zone Q' that multiply o’
and p’, respectively
HY, GY: parts of the H and G matrices obtained for zone Q' that multiply u” and
p”, respectively.

The BEM equations for the three homogencous zones of figure 3.12 are

ul pl
[Hl le H13] u12 =[G1 G12 G13] p12 (3150)
u13 p13
for zone Q!
H2' o =G2 p?! (3.151)
for zone Q? and
3 3
[H® H3‘]{u31}:[G3 G“]{pu} (3.152)
u p

for zone Q3. The traction equilibrium conditions and displacement compatibility
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conditions over the internal boundaries I'V are

ul? = p?!
uld = g3t
pi2o it (3.153)
p13 — ~p31
that transform equation (3.151) and (3.152) into
u12
[H2! G“]{ 12}=0 (3.154)
p
u3
[H* H** G*'}{u'?)} =G (3.155)
p13
The last two equations plus equation (3.150) can be rearranged into
ul
“3
Hl 0 le _Gu H13 _G13 Gl 0
ul? 1
o o B G6¥ o o[ d=fo oL @156
p
0 H* o 0 H¥ G*! 0 G*°
u13
p13

The above system of equations may be solved once the boundary conditions on
I'! and I are prescribed. The total number of unknowns is equal to the number
of nodal degrees of freedom over the external boundaries plus twice the number
of nodal degrees of freedom over the internal boundaries.

The subdivision of the region into several zones may be used also in
homogeneous media as a way of avoiding numerical problems or improving
computational efficiency. For instance problems that include cracks or notches,
as the one shown in figure 3.13, present numerical difficulties when the boundary
is discretized due to the proximity of some of the nodes. The difficulties disappear
if the region is divided into two zones in a way that the nodes that are very close
belong to different regions. Another situation where the subdivision of a homo-
geneous region may be useful corresponds to problems with a large number of
unknowns, as the one shown in figure 3.14. In those cases the subdivision trans-
forms the fully populated matrices into banded matrices, which are more convenient
from a computational point of view. In those cases, the increase in the number
of unknowns because of the internal boundaries must be small, otherwise the
subdivision will be worthless.
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Figure 3.13 Subdivision to avoid numerical difficulties in a problem with a notch
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Figure 3.14 Subdivision to increase computational efficiency

3.8 Indirect Formulations

The fundamental boundary integral equation used throughout this chapter is
known as the direct integral representation and gives displacements at internal
and boundary points in terms of boundary tractions and boundary displacements.
There are some other integral representations where the displacements are written
in function of variables which are not explicitly the boundary displacements or
tractions, Those representations are the basis of the so-called indirect boundary
element formulations.

Let us consider a state g;;, ¢;;, 4;, p; over the domain Q of figure 3.15(a). We
can now define another state over the complementary domain Q' (figure 3.15(b))
with variables o}, &;;, u}, p}. The tractions over the external region of Q' will be
referred to the normal n of the internal domain as shown in the figure.

It is easy to establish a reciprocity relationship for the complementary domain
between the fundamental solution applied at a point in Q and the complementary
state indicated by primes. This gives,

[ ufipi dl" — [ piuj dT =0 (3.157)
r r
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This relationship can be subtracted from the integral equation for the reference
state, as given by (3.71), i.e.

up— [ ufpedU + | pla, dT =0 (3.158)
r r

Notice that the body forces are not included for simplicity.
Subtracting (3.157) from (3.158) one obtains

= ] oy~ pi) AT+ PG — w) dT (3.159)

Since the complementary state can be defined arbitrarily, it will be assumed
that it is such that its displacements on the boundary are the same as those of
the original solution, i.e.

U, =1u, onI’ (3.160)
Calling o, = p, — p;, equation (3.159) can be rewritten as

ul = [ uko, dT (3.161)
r

This equation can be interpreted as the displacement at a point ‘i’ inside Q and
can be obtained by the summation of displacements due to loads o, dI" applied
at every dI" when Q is considered to be part of the complete region. The integral
representation in equation (3.161) is known as the single layer potential with
density a,. As can be seen from equation (3.160) the displacements are considered
to be continuous on the boundary while the tractions are discontinuous.

s

=24

Q' 7,
Z Pointi '
g
Point i
Internal Domain External or Complementary Domain

Figure 3.15 Internal and external domains
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Tractions at any point can then be computed by carrying out the derivatives
of (3.161) and in this case give

= l[ pio, dI’ (3.162)

Another possibility is to assume that the complementary state is such that

4

pi=p;, onTl (3.163)

Calling w, = u;, — u, equation (3.159) can be written as,

Ul = l[ prw, dI (3.164)

The above integral representation is known as double layer potential with
intensity w,. As can be seen by the definition of w, the double layer approach
produces displacements which are discontinuous on y while the tractions are
continuous. Equation (3.164) can also be physically interpreted as a superposition
of the displacements at i when dislocations , dI” are applied at every dI", with Q
considered to be part of the complete region. Tractions are calculated by carrying
out derivatives in (3.164) which has the disadvantage over the previous indirect
formulation of producing a higher order singularity.

It has been shown that internal displacements can be represented by a single
layer potential (equation (3.161)), a double layer potential (equation (3.164)) or
a combination of both, which is the basis of the direct formulation.

In general, the internal stresses and displacements computed by means of the
discretized form of the integral representations are more accurate than those
obtained using other numerical methods and similar discretizations. This is a
consequence of the fact that the internal values are obtained by integration of funda-
mental solutions that are exact and only the boundary densities of the potentials
are approximated. According to St. Venant’s principle the local errors of this
approximation may be expected to damp quickly.

The method based on the solution of the above integral equations by boundary
discretization are known as Indirect Boundary Element Methods. Sometimes this
name is used only for the single layer potential representation while the method
based on the double layer potential is called the Displacement Discontinuity
Method.

Example 3.3 Foundations

One of the most important aspects of the design of foundations is the computation
of their stiffness or impedance. This is represented by the matrix K which relates
applied loads to displacements,

F=KU ((a)



196 Chapter 3 Elastostatics

Although here we will only refer to the static stiffness of foundations, it is important
to point out that their dynamic response may be important in many other
applications. This problem can also be solved using boundary elements but its
discussion is beyond the scope of this text.

Figure 3.16 shows a transversal section of a foundation embedded in the soil.
In many cases the behaviour of the soil can be assumed to be isotropic and linear
and represented by a half-space. As the stiffness of the foundation is much larger
this is assumed to behave as a rigid body and moments or forces applied at the
top to simulate the loadings. When applying the Kelvin fundamental solution to
the three dimensional soil domain, one needs to discretize not only the soil-
foundation interface but also the free surface of the soil. This usually introduces
an approximation because the discretization of the free surface is only carried
out up to a certain distance from the foundations or because one develops an
approximate infinite element. Figure 3.17 shows such a discretization for a square
embedded foundation with level of embedment E/B =4/3 and an amount of free
field defined by 4/B = 2.5. The analysis was carried out using constant elements
and the axis of rotation for the rocking motion was considered to be on the soil-
foundation interface. Over the free surface elements the tractions were considered
to be zero.

The variation of stiffness with number of elements along half of the side of the
bottom of the embedded foundation is shown in figure 3.18 (the discretization of
the lateral walls is varied consistently). The figure shows that the boundary element
mesh does not need to be very refined to obtain accurate results, mainly because
in this case we are interested in the integrated tractions — i.e. resultant forces and
moments — rather than the stresses along the foundation. Results for N = 6 com-
pared favourably with those obtained with finer meshes.

The effect of the amount of soil free surface that is discretized can be seen
in figure 3.19 for the same foundation. The study has been carried out adding
successively lines of constant elements and the previous discretization of the soil
free surface. Results converge rapidly.

The discretizaton of the soil free surface may be avoided by using Mindlin’s

. fundamental solution [9] instead of Kelvin. This solution corresponds to the point
load in an elastic half-space and reduces the number of elements required to run
this type of problem. The computer time per integration over a boundary element

N\ % \

Figure 3.16 Rigid foundation embedded in the soil
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Figure 3.17 Discretization for one quarter of a square embedded foundation
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Figure 3.18 Effect of the interface discretization on the foundation stiffness.
(Results are normalized as follows: Horizontal stiffness: K, ,m = K((2 — v)/GB;
Vertical stiffness: K., = K,(1 —v)/GB; Rocking stiffness: K, 0rm = K, (1 — v)/
GB?; and Torsional stiffness: K, ..., = K,,/GB3.)
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Figure 3.19 Effect of the free surface discretization on the foundation stiffnesses

grows however due to the greater amount of terms involved in the fundamental
solution. Another computationally more efficient approach is based on the use of
Kelvin’s solution in conjunction with another point load solution following the
same direction but located at the image point of the first with respect to the soil
surface. The use of this solution reduces to zero the surface tractions with the
exception of p,3, p,3 and ps,, ps, which are expected to have a small effect in
soils. Figure 3.19 shows how when the double solution is used the result becomes
almost independent of the amount of free surface discretized and the free surface
does not have to be considered.

Many other soil problems can be studied using the boundary element method.
Some applications in zoned media are shown in figure 3.20, where it can be seen
that the soil can be inhomogeneous.

3.9 Axisymmetric Problems

There are many elastic problems that present an axisymmetric geometry and very
frequently also axisymmetric loading conditions. In the following, it is first
explained how boundary elements may be applied to axisymmetric problems with
respect to both the geometry and the loading by taking advantage of the symmetry
that reduces a three-dimensional analysis to two uncoupled plane domain
problems; one with two degrees of freedom per point (radial and axial) and another
with one degree of freedom per point (tangential). Non-axisymmetric loads are
studied later. The first boundary elements formulation for axisymmetric elastic
problems was published in 1975 [11], [12]. It was based on the Somigliana’s
identity obtained from the application of the reciprocity theorem between the actual
axisymmetric problem and the fundamental solutions corresponding to a radial
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T

Figure 3.20 Zoned soil models and boundary discretization

ring load and an axial ring load, for one part of the problem, and a tangential
ring load for the other (torsion) part of the problem, as indicated in figure 3.21.

The basic equation has now the same expression as in previous cases (equation
(3.87)) with u* and p* being the displacements and tractions due to the ring loads.
Those fundamental solutions were obtained by different procedures by Kermanidis
[11], Mayr [12], Cruse et al. [13], and Dominguez and Abascal [9]. They are
written in terms of Legendre functions or complete elliptic integrals, which
makes their integration along the boundary elements rather involved. Explicit
expressions of the ring loads fundamentals solutions may be found, for instance,
in [11], [13]. The procedure is basically the same as that presented in section 2.15
for axisymmetric potential problems. An alternative and more general approach
based on the three dimensional formulation is presented in what follows.

The three dimensional fundamental solution will be used and numerical
integration of p* and u* performed on the axisymmetric elements.
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Figure 3.21 Ring loads

The basic boundary elements equation for zero body forces can be written in
cylindrical coordinates using matrix notation as,

ciul + | p*u dI' = [ u¥p, dI’ (3.165)
I r

where the subscript ¢ stands for cylindrical.
The relation between cartesian and cylindrical coordinates may be written for
vectors u and p as

u,=QTu
b= Q"p (3.166)

for the matrix ¢
¢ =Q"TeiQ! (3.167)
and for matrices p* and u*
uf =Q"Tu*Q
o (3.168)
pr=Q"'p*Q

where (figure 3.22)

cosf@ —sinf O
Q=] siné cosf 0 (3.169)
0 0 1
Notice that u* and p* relate the collocation point i and the integration point.

Since i is the collocation point, it may be assumed that §'=0 (figure 3.22),
which makes the transformation matrix Q' =1. The kernels of the integrals in
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Figure 3.22 Cylindrical coordinates

equation (3.165) have the form

uf cos 0+ uf,sin@ —u¥ sin@+uf,cosd ul,
w=u*Q=1| uf cosf+uf,sinf —u¥ sinf+uf,cos8 ul;
uf, cosO+uf,sinf —u¥ sinf+uf,cos0 uf,

(3.170)

One half of a meridional section of the body is discretized into elements (figure
3.23) and equation (3.165) may be written for the boundary node i as

cu’ + i {f p[j p* d0]¢ dF}uf

;ﬁ {I p[! u d9]¢ dF}p’ (3.171)

where p is the radius shown in figure 3.22, I are the boundary elements, ¢ the
usual shape functions for two dimensional problems and the subindex ¢ has been
dropped out for simplicity.

The integration along 8 may be easily done by numerical procedures. The
submatrices HY and GV that relate two nodes i and j have the pattern

* 0 *lep
0 * 0}«8 (3.172)

* 0 *J ez
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Figure 3.23 Quadratic BE discretization for axisymmetric problem

where the zeros denote elements that are null due to the skewsymmetry of the
corresponding terms in equation (3.170). It is clear that the torsion and the
radial-axial problems are uncoupled and both may be studied on a plane domain.

A special numerical integration scheme for axisymmetric problems was
proposed by Gomez-Lera et al. [14] for axisymmetric problems using the three-
dimensional point load fundamental solution. When Kelvin’s solution is integrated
around the axis, a Gauss quadrature may be applied to every semi-ring; however,
its accuracy is easily improved by increasing the density of integration points near
the collocation points by means of a parabolic transformation of the circumferential
coordinate

=§(§+1)2; —1<¢<1 (3.173)

It should be noticed that since a rigid body motion along the radial coordinate
of an axisymmetric body is meaningless, the corresponding terms of ¢’ have to be
computed from the rest of the terms of the G and H matrices giving a uniform
shrinking of the ¢ coordinate or using the analytical expression given for plane
problems in the next chapter.

When the boundary conditions are not axisymmetric, the problem may still
be analysed by means of a plane model. The problem is divided into a number
of uncoupled plane problems by representing the prescribed loading or displace-
ment by a Fourier series along the tangential coordinate [15]. Each term of the
series produces displacements and stresses in the same Fourier mode and if the
prescribed values do not vary very rapidly around the axis, a few modes will be
enough for an accurate solution. The Fourier expansion is of the form
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0
u,= 3. (uy,, cos nb + uy, sin nd)

Ug = ZO (— g sin n6 + uly cos nf) (3.174)

0
u,= y. (U5, cos nd + us, sin nb)

where ‘s’ indicates the symmetric terms and ‘a’ the antisymmetric ones.

For each Fourier mode amplitude a discretized boundary equation like
equation (3.171) may be written with the only difference being that p¥ and u} are
now weighted by a sine or a cosine function and the integrals around the axis are
of the form

2n 2n
| u* sin nd do; | u*cos nf df (3.175)
0 0

It is worth noting that since sin nf has zero value at 6 =0, the i point cannot
be located at # = 0 to compute the amplitude of those terms of the Fourier series.
One only has to move i to a point, for instance §' = —n/2n,where the amplitude
is not zero. This change is easily taken into account by a shift of the origin of §
in equation (3.170).

3.10 Anisotropic Elasticity

The constitutive relationships described in section 3.2 are valid for isotropic cases
for which the behaviour of the material can be described in terms of only two
constants, In more general cases the material can be orthotropic or generaly
anisotropic. For a three dimensional anisotropic case the number of different elastic
constants is 21 and they can be expressed in matrix form as,

o =Dsg (3.176)
where D is a 6 x 6 matrix. The o and ¢ are the usual six stress and strain
components. The above elastic relationship can also be written in index form
which gives a notation more consistent with the previous sections, i.e.

0',-]- = dl'jklskl (3.177)

d;;, are called the rigidity coefficients. The inverse of (3.176) produces the elastic
compliance, ¢;j, i.€.

€kij = CijiiOu (3.178)

Although there are in general 21 constants for an elastic material, their number
is reduced when the material structure has one or more planes of symmetry.
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Materials with the orthogonal planes of symmetry are said to be orthotropic and
the number of independent coefficients reduces to 9.

For two dimensional problems, the plane x, — x, is a plane of symmetry for
the material structure. In this case the number of independent coefficients reduces
to 13. Furthermore if either the x, or x, are axes of symmetry, the material is
orthotropic and the constants reduce to 9 as before.

Fundamental solutions exist for the case of two and three dimensional
anisotropic cases but they are difficult to use because of the complexity of their
mathematical formulation or the need to find part of the solution numerically,
which may be inefficient.

Because of this a different technique will be described in this section which
can be applied to any anisotropic material. The approach consists of using a
reference isotropic fundamental solution and iterating to find the correct result.
The procedure will be explained in what follows.

Consider again the starting weighted residual statement, in terms of the
equilibrium equation (3.66), i.c.

j (0kj; + bk dQ = § (px— Pyui dT + _[ (e — w)pit dU (3.179)
Q T2 r,

The next step is to consider that the material is anisotropic but use the isotropic
fundamental solution corresponding to a reference elastic model, whose properties
may be found by averaging the anisotropic constants. Hence the original
coefficients can be expressed as,

dkjmn = dl?jmn + gkjmn (3180)

where d° indicates the reference state and d the residual or difference between the
actual and the isotropic elastic constants.
Integrating by parts (3.179) one finds that

~ [ ork dQ + | b dQ
Q Q

= — | puf dl' — | pu dU + | (i, — wp¥ dU (3.181)
Iy I

r.
Next, one substitutes the following expression
O'kj = dkjmnsmn = (dgjmn + &kjmn)amn = G)?j + OA-kj (3182)

while the fundamental solution obeys the following constitutive equation

0

* *
Ouj = dkjmngm"
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Hence formula (3.181) becomes
- oRtl; dQ — f G el dQ + | b dQ
Q Q Q

=~ | P dl — | pug dU + | (i, — w)p¥ T (3.183)
["2 l"1 rl

After noticing that

§ ol dQ = | aey; dQ (3.184)
Q Q

one can integrate by parts the first terms of (3.183) to produce
| ot dQ — | 868 dQ + [ bt dQ
Q Q Q

=— | pu dU — | pu dU + [ wp¥ dl' + | 4, p¥dl (3.185)
r, 'y } O ) %Y

Taking into consideration that the fundamental solution can be applied inside the
domain or on the boundary, equation (3.185) gives the following integral statement,

chut + § phu dT = [ ulp, dU + [ ulth, dQ — [ 6,;6%; dQ (3.186)
r r Q Q

where I'=T1 +T.

Notice that this formula is similar to (3.79) with only the addition of a new
domain term. As before ‘I’ represents the direction in which the fundamental
solution component is acting.

Equation (3.186) contains two types of domain terms. One is due to the body
force components b, and can sometimes be taken to the boundary as described
in section 3.6. The other term can be integrated on the domain using cells or
transformed into a ‘body force’ type term and then taken to the boundary. Let
us consider the term on its own, i.e.

[ b1t Q2 (3.187)
Q
Next one integrate by parts (3.187) which gives
— | 815, AQ + | Py dT (3.188)
Q r

The first integral can now be interpreted in function of a fictitious body force such
that

&kj,jzgk (3‘189)
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Hence equation (3.188) and (3.189) can now be substituted into (3.186) to give

chtg + | phw dU = [ uf(p + po) dT + sj; uli(by + b,) dQ (3.190)
r r

pr and b, are acting now as out of balance forces which represents the anisotropic
effect. The problem can be solved iteratively by finding the first solution with p,
and b, =0, and then computing their values and resolving the system as many
times as required. The influence matrices H and G are always the same. In matrix
form equation (3.190) can be written as,

HU =GP+ GP + DB+ DB (3.191)
The equations at the beginning of the iteration process are simply,

HU =GP+ DB (3.192)
and from then on one solves the following equation

HU =GP +DB+ B’ (3.193)

where B’ = GP + DB, where P, B terms result from the previous step.

While the b, terms may be reduced to the boundary as shown earlier the main
problem remains how to convert Bk terms into boundary integrals. If this is not
possible one will need to divide the domain into cells as explained in section 3.5.

A general way of reducing body force terms to the boundary is by using
particular solutions. This has been generalized in references [16] to [21] by using
a technique called the dual reciprocity method (DRM). Although this is an
interesting development with many applications in boundary elements it falls
beyond the scope of this book and for the further information the reader is referred
to the work of Brebbia and his collaborators Nardini, Wrobel and Tang given in
the above articles.
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Exercises

1.
3.1. Verify that the equation V2(V2G,) + — A’e; = 0 is obtained by substitution of displace-
U

ments in terms of Galerkin’s vector into Navier’s equation for the fundamental solution
(equation (3.34)).

3.2. Show that lim { pu¥ dI" =0, for any part or complete spherical surface of radius &
20 I

around the collocation point.
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3.3.

34,

35.

3.6.

3.7.

38.

3.9.

3.10

3.11.

Chapter 3  Elastostatics
Compute the terms of the 3 x 3 matrix ¢/ for a point on a quarter of a sphere edge.

Obtain the value of the kernel D,;; of the internal point stress representation by
derivation of the fundamental solution uf.

Is the matrix u* (equation (3.86)) relating two points of the boundless domain
symmetric? Answer the same question for matrix p* (equation (3.85)). Explain the
reasons.

Assume a rectangular constant element with a centred node for three dimensional
problems. Which terms of the matrices H” and G relating the node with itself are zero?

Give an explicit formula, in terms of internal coordinates, for the numerical integration
of u* and p* over a constant rectangular element when the collocation point is not
inside the element. The element is defined by the cartesian coordinates of its four
corners. 3 x 3 Gauss quadrature points should be used.

In section 3.6 it is said that a rigid body motion may be dropped from the fundamental
solution when solving two-dimensional elasticity problems. Give the reason why this
is possible for bounded regions.

When will the above question be true for unbounded regions?

Obtain the 3 x 3 fundamental solution matrix u* = Q'Tu*Q* in cylindrical coordinates
when the collocation point is at §' = —7n/2.

When a circular foundation resting on the surface of an elastic half-space is under
the effects of a horizontal force, the motion and traction components at any point of
the half-space surface may be written as:

— ! . ’
u, = uy, cos 0 t,=t,cosb
Ug = —ug sin 0 tg= —tgsin 0
u, = u, cos 0 t,=t,cosf

Write the integral equation relating u;, ug, u; and t,, tg, t; for boundary points using
equation (3.170) and the formula derived in exercise 3.10, for the § component.



