Chapter 1

Basic Concepts

1.1 Fundamental concepts

Consider a very simple differential equation applying in a one-dimensional domain
x,fromx=0tox=1,ie.,
d2
—+/ ‘u—b=0 in x (1.1)
dx?
u is the function which governs the equation and we usually need to find it using
a numerical technique which gives an approximate solution. 4% is a known positive
constant and b is a known function of x.

The solution of equation (1.1) can be found by assuming a variation for u
consisting of a series of known shapes (or functions) multiplied by unknown
coefficients. These coefficients can then be found by forcing (1.1) to be satisfied at
a series of points. This is the basis of the collocation (or point collocation to be
precise) method and is essentially what one does when using finite differences. In
finite elements instead the solution is found using the concept of distribution of
error within the domain. This is somewhat a process of ‘smoothing’ and it is then
not surprising that finite element solutions tend to have less ‘noise’ than finite
difference ones.

The concept of distribution or weighting of a differential equation is not only
valid for approximate solutions but it is a fundamental mathematical concept,
which can be used in countless engineering applications. Engineers for instance
are very familiar with the principle of virtual work which is usually formulated in
terms of work done by internal and external forces. They are usually unaware
however that the first ‘demonstration’ of the principle was proposed by Lagrange
using the concepts of distributions, applying what are now called the ‘Lagrangian’
multipliers. These concepts are also essential to study the behaviour of the
differential equations, and in particular the type of boundary condmons they
require and which are consistent with them.

To understand what these concepts mean before proposing any approximation,
one can consider another function w, arbitrary except for being continuous in the
domain x and whose derivatives are continuous up to a required degree (the degree
of continuity will vary with the problem as will be shown shortly). One can now
multiply the whole of equation (1.1) by this w function and integrate on the domain
x as follows:

1 2
f(fl_”z‘w.zu—-b)wdx:o (1.2)
0

dx
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This operation is called an ‘inner’ product in mathematics and although does not
imply any new concepts, allows us to investigate the properties of the governing
equation. This is done by integrating by parts terms with derivatives in the above
expression. In this case one can only ‘manipulate’ in this manner the first term,
i.e. d*u/dx?, which gives

1
jf{—fl-gd—wﬁ—(i,zu—b)w}dx-{—[;u w] =0 (1.3)

o { dxdx x o

Notice that the integration by parts has produced two terms, one in the domain
with first derivatives of u and w, and the other on the boundaries (which in this
case are simply the two points x =0, x =1).

Furthermore, if the w function has sufficient degree of continuity one can
integrate by parts again to obtain

O dPw du | dw !
— + (Au—bwrdx+| — —{u--1=0 1.4
ﬁ{”dxz (o )W} g [dxwl [“dx]o 4

Expression (1.4} is of course equivalent to (1.3) but here not only has one
passed all derivatives to the newly defined w function but the two terms at x =0
and x =1 give us an insight into the boundary conditions required to solve the
problem. In this case,

d
u or ZIE needs to be known at x =0 and x=1 (1.5)
X

Notice that the w function which in principle was an arbitrary function with
a certain degree of continuity can be made to satisfy certain boundary conditions if
one wishes to do so. In the principle of virtual displacements for instance, arbitrary
functions of this type are defined as virtual displacements but they are assumed
to satisfy the homogeneous version of the displacement boundary conditions, i.e.
they are set identically to zero at any points where the displacements are prescribed
even if those displacements (represented by u) are not set to zero, i.e. w=0 on
the parts of the boundary where u is given. This is done in order to eliminate

d T .
terms of the type |:du w} which give rise to a type of ‘work’ one does not wish to
X

have. In general however one can assume that w and dw/dx can have values
different from zero on the boundaries and this makes expression (1.4) more general.

The concept of an arbitrary function w used as a distribution function is related
not only to virtual functions and consequently to virtual work but also to the idea
of Lagrangian multipliers. These are functions of the w type defined in order to
satisfy certain equations. They will be defined better in what follows.

Although equation (1.4) gives the user an insight into the type of boundary
conditions required to solve the problem, these conditions have not yet been
explicitly incorporated into the problem. In order to do so let us consider that the
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boundary conditions are as follows:

u=1i at x=0

du (1.6)
g=—=4 at x =1

dx

where the derivatives of u are now defined as ¢ and the terms with bars represent

known values of the function and its derivatives. It is usual to call the first type

of conditions in (1.6) ‘essential’ and those like g involving derivatives as ‘natural’.
Substituting those values into (1.4) gives

1
j {u LW\ b)w} dx + {[aW]emr — [qWleoo)

{2 B4
dx |-, dx .-,

It is now interesting to try to return to the original expression (1.2) by
integrating by parts again, but this time passing the derivatives for w to u. The
first integration gives,

1
f {—d—“d—w+ (A%u — b)w} dx + [u fv—q
o dxdx dx .-,

dw dw dw
— i + a - =0 J— iy - = O
|:u dx]x=0 [qw:l\: ' [qW] ° [u dx:|.\'=l " [u d-x:lx=0

(1.8)

Notice that only the term in [u dw/dx], ., disappears.
Furthermore the following expression results after carrying out a second
integration,

:f){—-% (4 u~b)w}dx—|:j—2w] - +[Zz :IFO—[ f:::|

d
+[éW]x=1—[¢IW]x=o+[ﬁ—vX} =0 (1.9)
dX x=0

Once again only one term disappears, in this case [gw],.., — Notice that
q = du/dx as defined earlier. — Grouping the terms together one now arrives at an
interesting expression, different from the original formula (1.4) ie.

H dw
j{—w-{» (A u—b)w}dx~[(q—q)w]x=l+[(ﬁ—u)—:| =0 (1.10)
0 dx |,

=0

This expression implies that one is trying to enforce not only satisfaction of the
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differential equation in x but the two boundary conditions. The w and dw/dx
functions can be seen as Lagrangian multipliers.

Furthermore nothing has yet been said about approximations; the above
expressions are valid for exact solutions as well. In other words the procedure
describes a general tool for the investigation of differential equations.

1.2 The Poisson’s Equation

An important equation in engineering analysis is the so-called Poisson equation
which for two dimensions can be written as

*u 0?
I A S (1.11)
éx? o0x3

or
Viu=b in Q (1.12)
2 o*() X)) .

where V¥( )=—"+ , is called the Laplace operator. x, and X, are the two

ox?  ox3

coordinates and b is a known function of x;, x,. Q is the domain on which the
equation applies and is assumed to be bounded by I'. The outward normal to the
boundary is defined as n (figure 1.1).

The Poisson equation or its homogeneous form (i.e. b = 0) which is the Laplace
equation, governs many types of engineering problems, such as seepage and aquifer
analysis, heat conduction, diffusion processes, torsion, fluid motion and others.
Consequently it is a very important equation in engineering analysis.

X1

Figure 1.1 Domain under Consideration for Poisson Equation Basic Definitions
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Here one can also introduce the idea of multiplying equation (1.12) by an
arbitrary w function, continuous up to the second derivative. This gives,

J (Vu—bwdQ =0 (1.13)
Q
Integrating by parts the terms in x, and x, gives

5<_ﬁz?ﬁ_@_”_w_bw>dg+;@_uwdr:0 (1.14)
a\ 0Ox,0x, 0x;0x, ron

In this case the integration by parts of the two terms produces the derivative
of u with respect to the normal, i.e. du/dn which will later on be called g, i.e.
q = Cu/on.

Integrating by parts again, one obtains,

2 2
f(a—wu—ka—wu*bw)dﬁﬁ—j"iuwdl"~fua—vfdl"=0 (1.15)
o \ox3 dx2 ron r on
or
j{(Vzw)u~bw}dQ+§a—uwdF—jua—wdF=0 (1.16)
Q ron r oOn

Expression (1.16) is equal to (1.13) and hence one can write,
5 2 Ju ow
f(VuwdQ = (V2w dQ+ [~ wdll - fu —dl =0 (1.17)
Q o ron r on

where the term in b has been eliminated as it appears on the two sides of the
equation.

Equation (1.17) can also be expressed in the form known as the Green’s
theorem, i.e.

V)W — (Viw)u} dQ=j<a—uW—~ua—w> dr (1.18)
Q r \on dn

Although this theorem is in many cases given as the starting point for many
engineering applications, including boundary element formulations, it is much
more iluminating to use the concept of distribution as it illustrates the degree of
continuity required of the functions and the importance of the accurate treatment
of the boundary conditions. In this regard let us now consider that the I boundary
of the Q domain under study is divided into two parts, I'; and I, (I'=1 + 1)
such that,

u=1u on I,

du ‘ (1.19)
=—= on I,
on

Q1

q
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Hence equation (1.16) can now be written as,

[ {(V2w)u — bw} dO
2

+jqwdr+jqwdr—jaa_wdr—ju@drzo (1.20)
Iy ra Ir, on I n

Once again one can integrate by parts to retrieve the original Laplacian V2u
in order to see how the importance of the boundary conditions affect the equation.
Integrating by parts once we have,

O0x, 0x; 0x, 0x,

+ja—wudr+ [ qwdl + | ElwdF~faa—wdF—jua—wdF=0 (1.21)
r on r I r, on r, On

One can split the first integral on I” into two terms (one on I'; and the other on
I;), the second of which can be cancelled with the last integral in (1.21). This gives

| {_a_wa_"_flv_ bu —bw} dQ
o 0x,0x, 0x,0x,

0 d

+ {2 uar+ [ qwdl+ [ gwdl — [ a2 dr =0 (1.22)
Iy an I T2 Iy an-

Integrating again by parts the following expression is obtained

[ {(VZu)w — bw} dQ

Q

~jwqu+§@udF+jqwdF+j6wdF
r r on I r

—j"a@fdr=0 (1.23)
r, On

The first integral in [" can again be written as a summation of two integrals, one
on I'; and the other on I,. The one on I'; can be cancelled with the integral on I'y
of gw in the above equation. This gives

J{(VPu)w —bw} dQ — | wq dl + | aa—wudn | gwar
I T2

Q ) P n

— a%drzo (1.24)
I
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This Ja can be written as,

j' {(V*u—b)w} dQ — j (g— q)wdl + f (u~a)@vdF:0 (1.25)
Q I r on

Once again this expression shows that one is trying to satisfy a differential
equation in the domain plus two types of boundary conditions, the ‘essential’
conditions u = i on I'| plus the ‘natural’ conditions g = ¢ on I;. This is very much
what has been shown in equation (1.10) with the only exception that the sign of
the last term is different in both expressions. This is because in (1.10) the derivatives
were taken with respect to x rather than with respect to the normal, as they are now.

1.3 Approximate Solutions

Although the previous sections have introduced the concept of distributions, the
formulations apply irrespective of the type of solution one finds, i.e. they are valid
for exact as well as approximate solutions. This section however will investigate
what happens when the concept of an approximate solution is introduced in the
formulation. In engineering practice the exact solution can only be known in a few
simple cases and it is hence important to see how the solution behaves when one
introduces an approximation. Let us consider now that the function u defines an
approximate rather than the exact solution. In this case one can write for instance,

u:a1¢1+a2¢2+-.. (126)

where «, are unknown coefficients and the ¢; are a set of linearly independent
functions which are known. «; are generalized coefficients although in some
cases they can be associated with nodal values of the variable under consideration.
In general in engineering problems, one prefers to use nodal values as they have
a clear physical meaning and this is done in finite elements, finite differences or
the boundary element method. In such cases the approximation for u can be
written as

U=U, P, + Uy +. ..
N

u= 3 u;;

j=1

(1.27)

where ¢; are a set of linearly independent functions which are sometimes called
interpolation functions. u; are the nodal values of the field variable or its derivative
(or more generally the nodal value of any variable with physical meaning directly
related to u or its derivatives).

Introducing the approximation for u into the governing differential equation
one finds that the equation is no longer identically satisfied except for the case in
which (1.26) or (1.27) can represent the exact solution. This produces an error or
residual function which will soon be defined.
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For instance, introducing an approximate value of u into equation (1.1) one
generally finds that

d2
££+z%—b¢0 in x (1.28)

The same will generally occur with the boundary conditions corresponding to this
equation, i.e.

u—ii#0 at x=0 (1.29)
q—q4#0 at x=1 '

One can now introduce the concept of an error function or residual which
represents the errors occurring in the domain or on the boundary due to non-
satisfaction of the above equations. The error function in the domain is called R
and is given by

2

R=%§+i%~b (1.30)

and on the boundary one has,

and (1.31)

Although the above case is a particular and relatively simple equation the same
occurs for any other problem. If one considers the Poisson’s equation (1.12) for
instance, the error function in the domain is

R=V*u—b in Q (1.32)
and the errors for the boundary conditions (equation (1.19)) are defined by

Ri=u—i on I} (1.33)
Ry=q—¢ on I, '

The numerical methods used in engineering try to reduce these errors to a
minimum by applying different techniques. This reduction is carried out by forcing
the errors to be zero at certain points, regions or in a mean sense. This operation
can be generally interpreted as distributing these errors. The way in which this
distribution is carried out produces different types of error distribution techniques
which, in general, force the integrals of the residuals weighted by a certain function
to be zero. Because of this they are called weighted residual techniques.
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1.4 Weighted Residual Techniques

The solution of the boundary value problem defined by equations (1.28) and (1.29),
(1.32) and (1.33) or similar sets for other problems can be attempted by choosing
an approximation for the function u. One can then have three types of method:

(i) If the assumed approximate solution identically satisfies all boundary
conditions but not the governing equations in €, one has a purely ‘domain’
method.

(i) If the approximate solution satisfies the field or governing equations but
not the boundary conditions one has a ‘boundary’ method.

(i11) If the assumed solution satisfies neither the field equation nor the boundary
conditions, one has a ‘mixed’ method.

Let us first assume that the functions ¢; which are defined to approximate u,
satisfy all boundary conditions. One then has a residual R function in the domain
as the field equations are generally not identically satisfied. The idea is now to
make R as small as possible by setting its weighted residual equal to zero for
various values of the weighting functions, i, such that

[Ry,d2=0 inQ j=1,2,...,N (1.34)
Q

These functions have to be linearly independent.
Notice that another way of writing (1.34) in a form that is more compact and
easy to operate with, is by defining a new function w, such that

W:[}ll//l+ﬂ2l//2+"'+ﬂN(//N:'ZI B, (1.35)

where f3; are arbitrary coefficients. Hence equation (1.34) can now be written in
a more compact form as,

JRwdQ=0 inQ (1.36)
Q

Different types of weighting functions ; (or w) will define different approximate
methods. Equation (1.34) or (1.35) will produce a system of algebraic equations
from which the unknown values of the a; or u; coefficients used in u (equation
(1.26) or {1.27)) can be obtained.

The approximation can always be improved by increasing the number of N
functions used. (N is the number of terms in the approximate solution equal to
the number of weighting functions required.)

Approximate methods based on equation (1.36) are called weighted residual
methods and, given an approximate solution, the method will vary in accordance
with the functions used as weighting functions. In what follows a few will be
reviewed.
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(i) Subdomain Collocation

For this method the domain Q is divided in M subdomains and the integral of
the error in each of them is set to zero. The weighted functions are simply chosen as,

1§ Q.
%z{ O X35 (1.37)
0 for x¢Q;

(e indicates belonging to and Q; is the j” subdomain). Equation (1.34) becomes,

[ Rdx=0;, j=1,2,...,N (1.38)
Q;

(ii) Galerkin Method

In the case of Galerkin’s method the weighting functions are the same as the
appoximating functions, i.e.

¢i=Vy; (1.39)

hence equation (1.34) becomes,

fR$;dQ=0 j=1,2,...,N (1.40)
Q

Using the same definition as in (1.35) this can be written as,
[ RwdQ =0, (1.41)
Q
with, .
w=p1¢y+Brps+ ...+ Bydy (1.42)
This method is the starting point of many finite element formulations for which

the symmetry of ¢;=1y; coupled to inherently symmetric field equations, lead to
symmetric algebraic matrices.

(iii) Point Collocation Method
In this case N points x,, X5, . . ., xy are chosen in the domain and the residual is
set to zero at these points This operation can be interpreted as defining weighting

functions in terms of Dirac deltas, i.e.

Yo=AMx—x)  j=1,2,..,N (1.43)
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A(x — x;) at point x — x; has an infinite value but is such that its integral gives
unity, i.e.

[Ax—x)dQ=1; j=1,2,...,N (1.44)
Q

The Dirac function can be interpreted as the limit of a regular function when its
base tends to zero.
Hence equation (1.34) can now be written as,

§ RA(x — x;) dQ=0; j=12,..,N (1.45)
Q

which simply says that the error function is zero at a series of points, i.e.

Rl,_.,=0; j=12,..,N (1.46)

The method consists of setting the residual or error function equal to zero at
as many points as there are unknown coefficients in the approximate solution.
The distribution of the collocation points is in principle arbitrary, but in practice

better results are obtained if they are uniformly distributed.

Example 1.1

As an illustration of how to use weighted residuals, counsider the following
differential or field equation in the one dimensional domain x (where x varies
from x =0 to x=1), i.e.

d*u
ﬁ‘*“X:O (a)

with homogeneous boundary conditions, i.e.
u=0atx=0and x=1 (b)
(Notice that equation (a) is a particular case of equation (1.1) when A=0 and

b=—x.)
The exact solution of (a) can be found by integration and gives,

Uexact = g - (C)

Let us now attempt to solve (a) using the weighted residual techniques described
above, starting by defining an approximate solution which satisfies the boundary
conditions and can be written as

u=opy+op,+. .. (d)
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One can use Hermitian polynomials for ¢; but since only two of them satisfy the
homogeneous boundary conditions, only these two will be used, i.e.

u=o,P; +a,0, (e)
where

¢, =x—2x* + x3

¢y = x> —x?

()

The residual or error function in this case is obtained by substituting (¢) into
equation (a) which gives,
d*u
R(xlalaz) = EC‘E + X

¢, a’¢,
T T e T
=0,(6x —4)+a,(6x —2)+x (g)

Let us now reduce (g) using the various techniques previously described.

(i) Subdomain Collocation

Consider the domain divided into 2 equal parts, one from 0 to 1 and the other
from 1 to 1. In this case one can write,

1/2 172
| Rdx= | [o,(6x —4)+a,(6x —2)+x] dx=0
0 0
and : . (h)

1 1
f Rdx= [ [a,(6x—4)+a,(6x —2)+ x]dx=0
172 1/2

which produce the following system of equations

—1.2a, —0.250, +0.125=0

()
0.250, + 1.2, +0.375 =0

from which one can obtain,

]
—_—
—
~—

1.
01 =65 Ay = —

Substituting (j) into (¢) gives the following result
R (k)

Notice that the exact solution (c) has been obtained since the assumed shapes of
u arec able to represent it.
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(ii) Galerkin

In this case the weighting functions are,

Y=,
lﬁ2=¢2

and the weighted residual expressions are

i [o,(6x —4) + 0, (6x — 2) + x](x — 2x% + x*)dx =0
0

i Lo, (6x — 4) + 005 (6x — 2) + x](x* — x?) dx =0

0

which produces the following algebraic equations in o, and «,.

oy, t oy, +1=0
0(1—4062‘1.5=0

This also results in

1 - 1
% =& U= —3

(iii) Point Collocation

Here one forces the residual to be zero at a series of points. Consider in this case
that R is zero at the two points x =0.25 and x =0.75. This gives

R|x=0.25=——100t1—~2cx2+1 =0 o
n
R‘x=0.25 = 20‘1 + 100(2 +3=0

with the same results for «; and o, i.e.

Notice that this case is rather trivial and the same results have been obtained
for all the methods. In general this will not be true when the exact solution cannot
be reproduced by the proposed value of u and one will find different results
depending on the method used.

Example 1.2

Let us now study another equation using point collocation such that in this case
we will obtain an approximate rather than the exact solution.
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Consider the equation (1.1), with A2=1 and x = —b, i.e.
d*u
—+u+x=0 a
i (a)

and the homogeneous boundary conditions, u=0 at x=0and x=1.
The exact solution of (a) can be easily obtained by integration and gives

uﬁsmx_x (b)

Csind
Instead of using (b) we will try to approximate it defining a solution
u=a,¢,+a,d,+asp;+... (c)
where the ¢, are terms of a polynomial in x, i.e.
¢, =1, ¢, =x, Pys=x"... (d)
In order to satisfy the boundary conditions exactly, equation (c) has to give,
u=0atx=0and x=1 (e)
which implies that,

atx=0-u=aq,=0
)

atx=1-u=a,+a,+a3+...=0
Hence a, = 0and a, can be expressed in function of the other g, parameter, i.c.
a,=—(as+as+...) (&)

Substituting a, =0 and (g) into (¢) one can write,

u=a3(x% —x) +a,(x>—x)+ as(x* —x)+...

(h)
=x(1 —x)(—az—as)+x(1 —x)}—a)x+...
Defining now a new set of unknown parameters «; such that,
Ot1=-—a3—a4; 062=—a4... (i)

one can write,

u=x(1—x)o; +a,x+...) ()
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This function satisfies the boundary conditions in u and has the degree of
continuity required by the derivatives in equation (a), hence it is said to be
‘admissible’. We will also see that the ‘distance’ between the approximate and
exact solution decreases when the number of terms in (j) increases and this implies
that the approximate formulation u is ‘complete’, i.e. tends to represent the exact
solution better and better when the number of terms increases.

In order to apply the point collocation technique we will restrict ourselves to
two terms in the (j) expression, i.e.

u=x(1—x)(a, + ,x) (k)

Substituting this function into the governing equation (a) one finds the following
residual, i.e.

dz
de—z+u+x:(—2+x~x2)al+(2—6x+x2—x3)a2+x )
X

Collocation can now be interpreted as setting R =0 at two points, say x = and
x = 1. This can also be expressed in terms of Dirac delta functions applied at these
two points, i.e. the weighting function is,

w=BA(x— %)+ BA5(x —3) (m)

The weighted residual integrals are represented by

fRwdx=0 (n)
0

or simply,
R=0 at x=%1and x=1% (0)

Substituting these values of x into (1) one obtains two equations in o, and a,.
They can be written in matrix form as follows,

'
[% S "1 (®)

The solution of this system gives

6 40
% =37 %y =317 (@)

The approximate value of u — equation (k) — can now be written as,

_x(1—x)
U= (42 + 40x) (r)
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Table 1.1 Results for Point Collocation

X u (exact) u (approximate) R

0.10 0.018641 0.019078 —0.009953
0.30 0.051194 0.052258 +0.002027
0.50 0.069746 0.071428 +0.00000
0.70 0.065585 0.065806 —0.024884
0.90 0.030901 0.032350 —0.081474

Notice that the error function can now also be fully defined in terms of x, by
substituting «, and o, into (1). This gives,

R =317 (—4+ 19x — 2x? — 40x?) (s)

These results can be tabulated in table 1.1 where they are compared against the
exact solution for u. Notice that the values of R are identically zero at x = and
x = 4 but that this does not mean that the solution for u is exact at those points.

Example 1.3

Let us apply Galerkin’s technique to equation (1.1) for which A>=1and b= —x
with homogeneous boundary conditions u = 0 at x =0 and x = 1. The approximate
solution will be the same as in example 1.2, i.e.

u=a,;x(1 —x)+ax*(1 —x) (a)
which can be written as

u=o$; + a0, | (b)

where ¢, and ¢, are the shape functions (¢, = x(1 —x); ¢, =x*(1 —x)). The
residual is the same as previously, i.e.

d2
R=-§+u+x

dx (C)
=(=24x—xBo; + 2 —6x+ x* — xHa, + x

The weighting function w in Galerkin is assumed to have the same shape function
as the approximate solution (b), i.c.

w=p¢0,+ B0, (d)

The coefficients §, and §, are arbitrary.
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The weighted residual statement is,
1

(j)Rwdx=0 (e)

which produces two integral expressions as f; and §, are arbitrary, i.c.

1

gR(ﬂ1¢1+ﬁ2¢2)dX=0 ()
or simply,

qus, dx=0  and j[quz dx=0 (g)

0 0

Substituting (c) and the functions ¢, and ¢, into (g) gives
[(—=2+x—x%)a; + (2 —6x+ x* — x*)o, + x][x(1 —x)]dx =0

(=24 x—x®)o; + (2—6x + x2 — x¥)ay + x][x*(1 — x)] dx =0

Ot Oy
=
=

After integration this gives the following system

10 | 1z .
13 I (i)
10 10549 20
Notice that the matrix is symmetric because the equation is of an even order and
the approximate and weighting functions are the same. Solving (i) gives

-
“ o

% =35 % =7 ()
Substituting these values into (a) produces the approximate solution for u, i.e.
u=x(1 — x)(3g5 + 77%) (k)
One can also find the residual function R (equation c) which is now
R = 3i5 (—16 + 62x — 8x% — 63x7)
The results for u and R are given in table 1.2 where they are compared against
the exact solution of u. Notice that although the solution is overall more accurate
than in the case of using the collocation technique, one now needs to carry out

some integrations as shown in formula (h). This operation was not required for
the case of point collocation.
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Table 1.2 Results for Galerkin

x u (exact) u (approximate) R

0.1 0.018641 0.018853 —0.026945
0.3 0.051194 0.051162 +0.000485
0.5 0.069746 0.069444 +0.013888
0.7 0.065582 0.065505 +0.005070
0.9 0.030901 0.031146 —0.034165

1.5 Weak Formulations

The fundamental integral statements of the boundary element and the finite element
methods can be interpreted as a combination of a weighted residual statement
and a process of integration by parts that reduces or ‘weakens’ the order of the
continuity required for the u function.

If one returns to equation (1.12) with b =0 for simplicity, i.e.

Viu=0 in Q (1.47)

one can write formula (1.25) as

f (V2uyw dQ — jq qwdr+j (u—u —dr 0 (1.48)

Q

or in terms of residual functions,

wadQ~jR2wdF+lea—wdF=0 (1.49)
Q I I on

A special case of this equation is the case for which the function u exactly
satisfies the ‘essential’ boundary conditions, u = i on I}, which results in R, =0.
In this case equation (1.49) becomes

fRwdQ= | Rywdl' (1.50)
Q r:

or,
[ (VuwdQ= [ (g—qwdl (1.51)
Q r

A more usual form of this expression can be obtained by integrating by parts once
which gives

0
_§<ala_w+ Ou W)dg__jqwdr j"qwdr (1.52)
a \0x, 0x, 0x, 0x, I
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It should be pointed out that equation (1.52) could also be obtained by
integrating by parts over the domain the weighted residual statement for VZu and
then introducing the boundary conditions, i.e. starting with

| (ViuywdQ =0 (1.53)

Q
one can integrate by parts once to produce the following expression,

d
_ <5_"l+ﬂé?f_>dg+;?ﬁwdr:0 (1.54)
o \0x, 0x, 0x, 0x, ron

Introducing then the corresponding boundary conditions in I' (I' =I'; + [, results
in equation (1.52).

The last term in equation (1.52) is usually forced to be identically equal to
zero by the requirement that the w functions have to satisfy the Lagrangian version
of the essential boundary conditions, or condition on I, i.e. w=0 on I',. This
gives a relationship well known in finite elements, i.c.

ou ow  ou
5( ”l+_”_w)dg:jqwdr (1.55)
Q

0%, 0x,  0Ox, 0x, r)

Equation (1.55) is usually interpreted in terms of virtual work or virtual power,
by associating w with a virtual function. Notice that the integral on the left hand
side is a measure of the internal virtual work and the one on the right the virtual
work done by the external forces §. Equation (1.55) is the starting point of most
finite element schemes for Laplacian problems and is usually called a ‘weak’
variational formulation. The ‘weakness’ can be interpreted as due to two reasons,
(i) the order of u function continuity has been reduced as its derivatives are now
of a lower order (i.e. first rather than second order); (ii) satisfaction of the natural
boundary conditions is done in an approximate rather than exact manner, which
reduces the accuracy of boundary values of this variable. (Notice that R, is generally
different from zero.)

The boundary element formulation can be interpreted as introducing a further
formal step in the process of integration by parts on the derivatives of u, and
consequently weakening the continuity requirements for u.

If one starts again from equation (1.48) and integrates by parts as before, the
more complete expression obtained is as follows:

2
—~ (ﬁi@_w+6_ua_w)d02~; gwdl — | qwdl — | (u—a) 2 dr
o \0x,; 0x, 0x, 0x, r r r on
(1.56)

Integrating again in order to eliminate all derivatives in u on the left hand side
integral, one finds,

J (VwyudQ=—f gwdl — [ gwdl + | a2 ar + | W™ ar (1.57)
Q I r r, on r. on
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This is the starting statement for the Boundary Element formulation of the Laplace
equation. The same equation can be obtained starting from the integral of the
weighted residual over the domain Q (equation (1.53)), integrating by parts twice
and then introducing the boundary conditions. The processes have already been
shown from another field equation in formulae (1.13) to (1.16) and then (1.19) and
(1.20), the only difference now being that b is zero.

Consider now equation (1.1) again to illustrate how a weak formulation can
be used and the domain and boundary element statements are obtained. Let us
start with equation (1.10) which was deduced from (1.1) by a process of integrations
by parts and application of boundary conditions, i.e.

2
j {d_u w+ (A2u— b)w} dx —[(g—§wl.=; + [(u — i) d_w] =0 (1.58)
x=0

0 dxz X

which can also be expressed in a more compact form in function of residuals, i.e.

L dw
£Rw dx~[R2w]x=1+[RIE:| =0 (1.59)
x=0

The function u will now be assumed to satisfy exactly the ‘essential’ boundary
conditions u = # at x = 0. In this case (1.58) becomes,

1 dzu . ~
J [— w+ (A%u — b)w] dx =[(qg—g)w]l,-, (1.60)

o[ dx?

or in terms of (1.59), simply
1
f Rwdx =[Rywle=, (1.61)
0

Integrating by parts equation (1.60) one can write

LU dud
(f) {—ﬁ % + (A%u— b)W} dx = [qw]i=0 — [gWli=1 (1.62)

If the weighting function w is forced to satisfy the homogeneous version of the
essential boundary conditions at x =0, equation (1.62) becomes,

H%%* (»:Zu—b)u} dx = —[w];-, (1.63)

which is analogous to equation (1.55) obtained for the Laplace field equation.

Notice that equation (1.59) can also be obtained by applying the boundary
conditions into statement (1.3) and that this statement was simply obtained by
integrating by parts weighted residual expression (1.2).
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The Boundary Element type governing statement for the example under
discussion is found by carrying out two consecutive integrations by parts of (1.10)
and this gives the previously obtained formula (1.7), i.e.

L dPw
g {“ e + (A*u— b)W} dx + {[gwl,=1 — [qw], -0}

— {I:u @:l - |:ﬁ @:l } =0 (1.64)
dx i, dx s

This expression could also have been obtained by carrying out a double
integration by parts of the weighted residual equation (1.2) and applying afterwards
the boundary conditions.

It is worth noting that both in this one dimensional example and the two
dimensional Laplace equations, a Finite Element type statement has been obtained
after the first integration by parts (equations (1.3) and (1.14)), and Boundary
Element type integral equation after the second integration (equations (1.4) and

(1.15)).

Example 1.4

In order to understand the effect of weak formulations on the satisfaction of
boundary conditions, we will now consider again equation (1.1) but assume that
the boundary conditions are of two types, i.e.

atx=0-»u=0 (‘essential’ condition)
d . (a)
atx=1-gq :d—u =q (‘natural’ condition)
X

The expression previously used for the approximate values of u can not now
be applied as the boundary conditions are different. Let us consider again the
starting expression,

U=a, +ax+ax>+. .. (b)
and satisfy exactly the essential condition, at x =0, i.e.

at x =0; u=a; =0 (c)

but not the natural condition.
Hence the approximate solution is now,

u:a1x+a2x2+... (d)

where o) =a,, 0, =d5 ...
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The residual will now be different from the one in the previous examples, i.e.

2
R=d—z+u+x:a1x+a2(2+x2)+x (e)
x

The weighted residual statement has to include now the natural boundary
condition R, residual which is not identically satisfied, i.e.

i Rwdx =[R,w]l, -, ()

or in expanded form,

d2
I(—d +u+><>w dx =[(q—qwli=, (g
0 X

One can now solve equation (g) in its present form or reduce the order of derivatives
in the domain and the number of terms on the right hand side by integrating by
parts the d*u/dx?* term. This gives

Lldud
ﬁ{az;ﬁ— <u+x>w} dx = [qWl=s — [gw)eco (h)

Notice that in Galerkin the weighting function w has the same shapes as the
approximation for u (equation (d)). Hence for two terms,

u=a,¢; + 4,0, (i)
w=p1¢,+ B0,

¢,=x and ¢,=x%

and

where

Substituting these values into (h) one finds,

oo

- (“1451 + a0, + x)(ﬂ1¢l + ﬁ2¢2)} dx
—[G(B1d, + Bab2)]emr G)

or

{0 + 20,x)(By + 2B,x) — (o x + o, x% + x)(Byx + Bx7)} dx

O ey =

=1g(8, + )] (k)
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As the i, and f, terms are arbitrary this implies satisfaction of the following
two equations,
1
| {(oy + 20,x) — (00,x% + ;x> + x?)} dx = G a0
0

1
F {2003 + 200,x%) — (33 + ax* + x3)} dx =
0

Integrating the above equations and writing the results in matrix form one finds,

-y
[ 12 1y " Na 4+ )

The values of «, and a, are,

Pl Wi
s

oy =0.9859 + 1.98647

_ (n)
a, = —0.4319 — 0.43223

Notice that an error will now appear when we try to compute the value of ¢ at
x=1,ie.

d
qz[,“] =, + 20, =0.1221 + 1.122G (0)
dx x=1

and hence this value will never be equal to the applied g, i.c.
g=0122141.122G#§ (p)

This peculiar result is characteristic of weak formulations such as those used
in finite elements. Because of this approximate satisfaction of the natural boundary
conditions, f.e. solutions used in engineering practice tend to give poor results for
surface fluxes or tractions. The resulting errors in many cases ‘polute’ the results
to such an extent that the finite element solutions are unreliable for many cases
of stress or flux concentration except when using very fine meshes.

Results for v and R are given in table 1.3 for the case in which § = 0. The exact
solution is

sin x

—X _ (q)

cos |

Table 1.3 Results for Weak Formulation and Galerkin Method

X u (exact) u (approximate R

0.1 0.084773 0.094271 —0.669519
03 0.246953 0.256899 ~0.306901
0.5 0.387328 0.384975 0.021175
0.7 0.492328 0.478499 0.314699
0.9 0.549794 0.537471 0.573671
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1.6 Boundary and Domain Solutions

In section 4 the weighted residual technique was classified into boundary, domain
and mixed methods. Boundary methods were defined as those for which the
assumed approximate solution satisfies the governing or field equation in such
a way that the only unknowns of the problem remain on the boundary. The
satisfaction of the field equation may be of its homogeneous form or a special
form with a singular right hand side.

In the process of double integration described earlier one had transferred the
derivatives of the approximate solution u to the weighting function w and so the
conditions previously imposed on the former apply now to the latter. A boundary
method can be obtained by choosing a weighting function w in either of the
following two ways, i.e.

(i) By selecting a function w which satisfies the governing equation in its
homogeneous form, or

(ii) By using special types of functions which satisfy those equations in a way
that it is still possible to reduce the problems to the boundary only. The
best known of the functions applied as right hand side of the equation in
the second method are the Dirac delta functions which give simply a value
at a point when integrated over the domain.

It is important however to realize that other functions could also be proposed
and may be very appropriate for other cases, provided that they can be reduced
to the boundary.

We will now apply both techniques to our simple equation (1.1), i.e.

2
%wﬂu—b(x):o (1.65)

or its weighted residual statement,

1 2 1 1
f[u(fl—v;-i-/'.zw)—bw} dx+[§5w] —[u?f] =0 (1.66)
0 X X o X o

The first approach implies that a solution is known such that

d*w
4+ Aw=0 1.67
0 (1.67)

without taking into account the actual boundary conditions of the problem.
Hence statement (1.66) reduces to

1 1 1
—jbwdx+[d—uw} ~|:ud—w] =0 (1.68)
0 dx 0 dx 0

This approach is associated with the method called Trefftz.
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The second approach is based on a function w such that

¥ iw= A, (1.69)
dx?

where A, indicates the Dirac function such that

xite
{singular at the x; point with | A;dx=1
A,

, e (1.70)
=0 at any other point

Notice that in this case

1 2 1
y[u@_fwwﬂ de=—fubdx=u (L71)

0 X

where u; represents the value of the function u at the point x;. In this case equation
(1.66) becomes,

Ibw dx-l—[%—Li w]l——[u d_w:llz (1.72)

X o

When the x; point is chosen on the boundary, then equation (1.72) gives a
relationship between boundary variables.

The second approach is the one usually applied in boundary elements where
the function w is called the ‘flundamental’ solution of the governing equation, or
solution of (1.69). Notice that this solution is obtained without taking into con-
sideration the boundary conditions of the problem.

Domain solutions are obtained from weighted residual statements when the
assumed approximate solutions do not satisfy the governing equations One can
return to equation (1.1) which after integration by parts gives the following
statement,

1 d i
J.{__ud_w (4 u~b)w}dx+[d—uW] =0 (1.73)
o dxdx dx o

This is a finite element type equation for which the last term can be found to be
zero at the boundary points where g = du/dx is nnknown, by the requirement that
w=0 there. Substituting an approximate solution u in terms of unknown
coefficients and known weighting functions leads to a system of equations to solve
the problem. Notice that in the case of finite elements the unknown function u is
explicitly defined over all the domain.

Although the above remarks refer to the starting one dimensional equation
(1.1) they also apply for the case of the Poisson equation (1.12) and the associated
weighted residual statements (equations (1.14) and (1.16)). Similar considerations
can be made for many other types of field equations.
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Example 1.5

Let us now return to the same equation as defined in Example 1.1 and try to
solve it using a weak formulation and considering boundary as well as domain
techniques. The field equation is

d*u

— +x=0 a

e (a)
with boundary conditions,

u=0 at x=0and x=1 (b)

(i) Boundary Solation. Homogeneous Approach

A weighting function which will satisfy the homogeneous version of equation (a), i.e.
d*w
A c
e ()

is the simple function

w=a;x+a, with dw/dx = a, (d)
Equation (1.68) can be written for the case A=0and b= —x as,

1 d 1

§xwdx + [qw]})—[u -wjl =0 (e)

0 dx _lo

After substituting above the boundary conditions (b) and the expressions for
w and dw/dx as given by (d) equation (¢) becomes

1
gx(alx+a2) dx +qi(a; +a;) —qoa, =0 ()

As the above equation has to be satisfied for any arbitrary values of a, and a,,
it gives the following two expressions

and hence,

(h)

These values of g at x =0 and x =1 which are now the problem unknowns,
are in this case the exact values.

Q=

o =
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(ii) Boundary Solution. Singular Approach

The weighting function in this case is chosen such that
d*w

3t A=0 (M)

A solution of equation (i) regardless of boundary conditions is

X X < X; .
w=<" s ()
xi, X>x,

Once the boundary conditions are applied, equation (1.72) becomes
1
~u;+ f xwdx + q,w; — qowo =0 (k)
0

Taking into consideration that wy =0 and substituting the other values of w as
given by (j) one finds,

xi 1
u=§ x?dx+ | xxdx+q,x )
0 Xi
or,
u;= %X +q,x (m)
1 2 6 ql i

Notice that only one unknown (g,) remains, since one of the boundary stresses
disappeared because of the variation of the weighting function w. The value of ¢,
can be determined by taking the coordinate x; =1, i.c.

ul_—_O:%——%—{—ql (n)
1
3

which is the exact value in this case.
Any value of u inside the domain can be computed from (1), i.e.

3
Ui =138 (0)

which is also the exact solution.

If instead of the fundamental solution given by (j) one had chosen a funda-
mental solution that also satisfies the boundary conditions, then no unknowns
would exist either in the domain or at the boundaries and the value of u at any
point would be obtained by a single integration. Consider for instance the solution,

= x)x x < X;
W_{(l — X)X; x> X; (p)
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This function satisfies (i) and the boundary conditions w=0 at x =0 and x =1
(wo = w, = 0). Thus equation (k) gives

1 Xi
=fx j(l—xx dx+f (1 —x)x dx (q)
)] 0 X
resulting in

Xi
Uy =——
6

(r)

oA,

which is the exact solution.
Fundamental solutions that satisfy the boundary conditions as well as the
governing equations are called Green’s functions.

(iii) Domain Solution

The weighted residual statement used here is the one resulting after one integration
by parts has been carried out {equation (1.73}), i.e.

1 1
f{—@d—w{-xw}dx-k[d—uw] = (s)
o { dxdx dx o

The proposed approximate solution is the one in Example 1.1 which satisfies the
boundary conditions, i.e.

u=oy¢; + a0, t)
with

¢, =x—2x+x3

¢y =x*—x?

g =3x?—4x+1

dx

%=3x2—~2x

dx

where ¢, and ¢, are the Hermitian cubic polynomials.
Substituting these values into (s) and using Galerkin, i.e.

V=04 Y=, (u)
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one can write,
1
j [o,(3x% —4x + 1) + a,(3x? — 2x)](3x* —4x + 1) dx
0

:ix(x~2x2+x3) dx (w)

i [, (3x% — dx + 1) + 2, (3x? — 2x)](3x? — 2x) dx
0

which after integrating and solving also gives the exact solution, i.e.
<x1 = %5 aZ = —:li (x)

It is worth noticing that if the approximation used for the ‘weak’ formulation
is the same as the one used for the original domain weighted residual equation
the result will be the same in all cases. The advantage of the ‘weak’ formulation is
that the order of the derivatives of u is in this case reduced and hence the order
of derivability required by the assumed approximate solution is also reduced.

1.7 Concluding Remarks

This chapter has presented the Boundary Element Method as a weighted residual
technique. This approach permits relation of the method to other numerical
techniques and gives an easy way of introducing boundary elements.

For simplicity one dimensional problems have been discussed throughout the
chapter to present the relationship between different integral statements and also
between approximate techniques. The presentation was then extended to potential
problems governed by the Laplace or Poisson’s equations, which will be used in
the next chapter. Some authors prefer to deduce the boundary integral equations
from Green’s theorem instead. Notice that this theorem has also been presented
here (equation (1.18)) where it was shown that it can be derived from Lagrangian
multipliers or basic residual type statements.

Later on a similar approach will be discussed for elasticity problems as shown
in Chapter 3. The beauty of weighted residuals is that they are simple to use and
can be applied for a wide range of problems, including some very complex non-
linear and time dependent cases which are not discussed in this book.
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Exercises

1.1

1.2,

1.3.

1.4.

1.5.

1.6.

1.7.

dZ
Solve d—l; + u + x =0 with boundary conditions u(0) = u(1) = 0 using a trial function
X

of the form u = a, + a;x + a,x* and point collocation for x = 1/2. Plot the solution
and compare it with that of example 1.2 of the text and the exact solution given by
equation (b) of that example.

dz
Solve d_z =exp(u) from x = 0 to x = lwith boundary conditions u(0) = u(1) = 0 using
x

the same trial function and collocation point of exercise 1.1.
Solve V2u =0 in the plane domain 0 < x < !, 0 < y < oo with boundary conditions

Y

u(Q, y)=u(l, y)=0
u(x,00)=0

u(x,0) = x(1 - x)

1

0 1
using a trial function of the form u = A(y)x(x — 1) and point collocation for x = 1/2,
0 < y < o0 as collocation point.

Solve exercise 1.3 using the Galerkin method with the integral and weighting function
only along the x axis.

d d
Solve the equation T [(1 + u) cTu:| =0 from x =0 to x = 1 with boundary conditions
X X

u(0)=0 and u(1)=1 using u=ay+ a;x +a,x* as trial function and subdomain

collocation with only one subdomain (x from 0 to 1).

The equation of the vertical displacement of a cable suspended between two points
2

. d . . L .
is &1% + p(x) = 0 where p(x)is the ratio between the distributed load and the horizontal
x

force at the extremes.

Use the weak formulation and the homogeneous approach of boundary solution
to compute the slope at the extremes for a cable that extends from x=0 to x =1
with boundary conditions u(0) = u(1) = 0. The function p(x) is given by

p(x)=0 0<x<1/4
px)=1  1/4<x<3/4
p(x)=0 JA<x <1

Using the same equation of exercise 1.6 and the singular approach of boundary
solution compute the value of u at the mid-point.
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1.8.

1.9.

Chapter 1 Basic Concepts

The same as exercise 1.7 using a fundamental solution that also satisfies the boundary
conditions (Green’s function).

Solve the same equation of exercise 1.6 by means of a domain solution procedure
and Galerkin. Use the following approximate solution

u=a, sin nx + a, sin 3nx



