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Summary and objectives 
 
In tutorial 2, we demonstrated the basic steps for deriving the direct boundary integral equation. In this 
tutorial we will explain, with more examples, the derivation of the direct boundary integral equation for 
systems of partial differential equations. We will consider two examples: elasticity problems and shear-
deformable plate bending problems. 
 
1  Elasticity equations 
In this section, we will derive the direct boundary integral equation form for elasticity problems (see Ref. [1] 
for more details about the theory). 
 
1.1 Governing equations 

0b, ijij =+σ                      (1) 

where (σ) denotes the stresses and (b) are the body forces. Equation (1) is called the Navier 
equation in terms of stresses. 
 
1.2 Problem variables 

ui: displacements, pj: tractions, where  
jiji np σ=                                   (2) 

in which (n) is the normal to the boundary (Γ). 
 
1.3 Strain-displacement relationships 
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and 
iiii ,u=ε                                   (4) 

where (ε) denotes the strains. 
 

mailto:youssef@eng.cu.edu.eg


1.4 Stress-displacement relationships (Hooke’s law) 
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in which (E) is the elasticity modulus (the Young’s modulus) and (ν) is the Poisson’s ratio. 
 
1.5 Integral representation 

By weighting equation (1) using certain functions (Ui) and integrating it over the problem domain 
(Ω), the following integral identity can be established: 

( ) 0dUb, iijij =Ω+σ∫
Ω

                                   (6) 

It has to be noted that equation (3) is a scalar equation (all involved indexes are dummy). 
Applying the integration by parts (Green’s identity) on the first term in equation (6), it gives: 
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                                 (7) 

Replacing the stresses with the tractions (equation (2)) in the first integral and with the 
displacement derivatives from equation (5) in the second integral, it gives: 
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Applying the integration by parts for the second integral, one obtains: 
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Replace (uk) by (ui δki) in the third and the fourth integrals and (uj) by (ui δij) and group together 

terms, to obtain: 
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Now consider the terms shown in the above equation: 
 
term1:   (Ui,j δki nk)  (Uk,k nj)  Note: (k) is a dummy index 

term2:  (Ui,j δij ni)  (Uj,i nj) 

term3:  (δki Ui,jk)  (Uk,kj) 

term4:  (δij Ui,ji)  (Uj,ij) 
Then the integral equation can be re-written as follows: 
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Where the bold (σ) denotes the stresses corresponding to the weighting functions (U). From 
equation (2), the following traction-stresses equation can be written: 

jiji nP σ=                                 (12) 

where the (P) denotes the tractions corresponding to the weighting functions (U). Then equation 
(11) can be re-written as follows: 

0d,udUbdPudpU jijiiiiiii =Ω+Ω+Γ−Γ ∫∫∫∫
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 σ                              (13) 

This equation represents the virtual work principal between two states (u, p) and (U, P). It is also 
called the Maxial-Betti reciprocal principal. The followings can be highlighted on this identity: 

1- It is a scalar equation, i.e. all indexes are dummy indexes. 
2- The function (U) can be chosen as any arbitrary function. 
3- Two domain integrals appeared in this identity (recall tutorial 2), one for the body forces 

and the other where the differential operator is swapped from being applied on (u) to be 
applied on (U). The rest of the integrals are boundary terms. 

4- It is defined at a point, therefore it is more convenient to write it for any point (ξ) inside 
the domain (Ω) as follows:   
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The most important aspect now is how to choose the functions (U) in order to get rid of the last 
domain integral. To do so, one can choose the (U) as the displacements corresponding to single 
unit load in infinite domain, or: 

kijkij ),(),(, δδ−= xξxξσ                                (15) 

where the δ(ξ,x) is the Dirac delta distribution. There are several items to highlight in this 
equation: 

1- We introduce the point (x) to represent the field point; at which (U & P) will result due to 
an applied unit load at the source point (ξ). 

2- We introduce an additional index (k), which represent the direction of the applied unit 
load at the point (ξ); therefore this index should appear in (U & P) from now on and 
henceforth. It has to be noted that the index (k) is the only non-dummy index in the 
equation. 

3- From the properties of the Dirac delta distribution, the resulting (U & P) will no longer 
be functions, they will be two-point kernels and will be denoted as the “fundamental 
solution kernels”. 

By substituting using equation (15) into the last domain integral in equation (14) and making use 
of the properties of the Dirac delta, one obtains: 
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Substitute this result into equation (14), to give: 
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where (x) is a field point on the boundary, (X) is an internal field point and (ξ) is an internal 
source point. Equation (17) represents the Somigliana identity and it is the boundary integral 
equation for internal collocation point (ξ). The symbols (Uki & Pki) are the two-point fundamental 
solution kernels (known as Kelvin’s fundamental solution; although some times they are also 
called free-space Green’s functions). They represent the displacements and tractions at point (x) in 
the direction (i) due to applied unit load at the point (ξ) in the direction (k). It has to be noted that, 
in order to use the former integral identity inside the boundary element method, the point (ξ) has 
to be taken to the boundary. This will be discussed in a future tutorial. 
 
2  Shear-deformable plate bending equations 
The direct integral equations for the shear-deformable plate bending problems will be derived in 
this section as another example (for more details, see Ref. [2]). 
 
2.1 Governing equations 

0Q,M =− αβαβ                                 (18) 



0q,Q =+αα                                 (19) 
where (M & Q) are the bending moment and shear forces stress resultants and (q) denotes the 
applied uniform domain loading. Noting that, in this section, the Roman indexes vary from 1 to 3 
and the Greek indexes will vary from 1 to 2. 
 
2.2 Problem variables 

ui: uα (rotations) & u3 (deflections): generalized displacements and pj: generalized tractions, where  
βαβα = nMp                                 (20) 

αα= nQp3                                 (21) 
in which the same notation is used as that of the former section. 
 
2.3 Stress resultant-displacement relationships (the Generalized Hooke’s law) 

αβαβγγαββα
ν−

αβ δ
λν−

ν
+⎟

⎠
⎞

⎜
⎝
⎛ δ

ν−
ν

++= q
)1(

,u
1
2,u,uM 22

)1(D                           (22) 

( )αα
ν−

α +λ= ,uuQ 3
2

2
)1(D                               (23) 

in which (D) is the modulus of rigidity for the plate and (λ) is the shear factor. (q) is the applied 
uniform load of the domain. 
 
2.4 Integral representation 

By weighting equation (1) using certain functions (Ui: Uα & U3) and integrating it over the 
problem domain, the following integral identity can be established: 
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Applying the integration by parts for both terms, it gives: 
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Now we are going to perform the following algebraic operations on the former equation: 
1- Use equations (20) and (21) in the first and the fourth integrals respectively, 
2- Group the third and the fifth integrals and replace the shear stress resultant by the 

equivalent generalized displacement derivatives from equation (23), 
3- Replace the moment stress resultant in the second integral by the equivalent generalized 

displacement derivatives from equation (22).  
After performing all the above operations, we obtain: 
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This equation can be re-arranged as follows after applying the integration by parts another time on 
the second integral and grouping the first and the third integrals: 
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Where the bold (Qα) is the shear stress resultant corresponding to (U). The second integral in 
equation (27) can be decomposed using integration by parts and using equation (21), as follows: 
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One can now replace the result of equation (28) into equation (27) and perform the following 

substitutes: 

(uβ)  (uα δαβ),  (nβ)  (nα δαβ) 

(uγ)  (uα δαγ), and  (nγ)  (nβ δγβ)  
Then equation (27) can be rewritten as follows: 
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Where the bold (Mαβ) is the bending moment stress resultants corresponding to (U). Assuming 
that the system of (U & P) has zero body forces, i.e. (q=0) and using equations (20) and (21), the 
equation above becomes: 
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Equation (31) can be regarded as the generalized Betti reciprocal theorem for this problem. 
Similarly, for elasticity problems, by choosing the system of  (U & P) to represent the fundamental 
solution case and introducing the two-point concept as well as the direction of the applied unit 
generalized force, one obtain: 
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After making use of the properties of the Dirac delta, the final integral equation can be written as 
follows: 
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which is the direct boundary integral equation (or generalized Somigliana identity) for an internal 
point of the shear-deformable plate in bending. 
 
3  Conclusions 
In this tutorial, we have described two examples for the formulation of the direct integral 
equations. The first example dealt with elasticity equations, whereas the second one applied to 
shear-deformable plates in bending. It can be seen that the derivation steps are systematic, 
however it needs some care when using the indicial notation combined with some skill in 
condensing some of the algebraic expressions. Most of the integral equations are derived using the 
above procedures. However others need additional decomposition using the integration by parts as 
presented in simple form in tutorial 2. Such advanced examples will be covered in future tutorials.  
 
In the next tutorial, we will discuss the derivation and the properties of fundamental solutions. 
 
4  Exercise  
Derive the direct boundary integral equation for the shear-deformable plate bending resting on the 
two-parameter Pasternak foundation model. The governing differential equations for this model 
are given as follows: 

0Q,M =− αβαβ                                 (36) 

0uGuKq,Q 3
2

f3f =∇+−+αα                               (37) 

where (Kf) and (Gf) are two foundation constants. 
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