Chapter 2

Potential Problems

2.1 Introduction

Since the publication of the first book on Boundary Elements in 1978 [1] many
such works have appeared in the literature, some dealing with potential, others
with elastostatics problems as described in Chapter 3 and many other engineering
applications. The importance of 1978 is that on that date publication of the first
book on boundary elements coincided with holding the first conference in which
the method was established, although the name in the context of the now classical
B.E.M. appears to have been used for the first time in two papers by Brebbia
and Dominguez and dated 1977 [2], [3]. Up to that time boundary integral
equations solutions were almost exclusively the domain of mathematicians and
physicists, with very little work being done to apply them to realistic engineering
problems, Efforts such as the pioneering work by Hess and Smith [4] remained as
special cases rather than being interpreted as a way of generating a whole new
method of solutions for general engineering problems. Nevertheless Hess and Smith
developed many powerful programs for the solution of Laplace type boundary-
value problems which were applied to potential flow and arbitrary bodies, using
what is now called the indirect boundary element technique. They extended their
formulation to analyse three dimensional objects as well as two dimensional and
their codes are still popular in aerodynamics. Equally important although in a
different field was the work of Harrington and his collaborators [5], [6] who
applied the technique to solve electrical engineering problems using more general
impedance boundary conditions, of the type now called Robin or mixed conditions.
They were still using the indirect formulation.

Boundary elements are usually associated with the direct formulation which
is the one discussed most of the time in this book. This formulation in potential
problems can be traced to Jaswon. As early as 1963 Jaswon [7] and Symm [8]
presented a numerical technique to solve Fredholm boundary integral equations,
which consisted of discretizing the boundary into a series of small segments
(elements) and assuming a constant source density within each segment. They
employed collocation to obtain the governing system of equations and compute
the influence coefficients using numerical — Simpson rule - techniques, with the
exception of the singular coefficients which were computed either analytically or
by the summation of off-diagonal terms. They even proposed a more general
formulation through the application of Green’s third identity with potentials and
their derivatives as boundary unknowns and results for this formulation were
represented in [7] and [9]. All the bases of boundary elements were there but
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somehow their work failed to attract the attention it deserved, probably due to
the simultaneous emergence of the finite element method.

Since 1978 the boundary element method is seen as related to other numerical
techniques such as finite elements and finite differences, mainly through the work
of Brebbia and his collaborators. This relationship is sometimes highlighted by
using weighted residual or variational type techniques.

In this chapter the formulation of boundary elements for potential problems
will be discussed. The method is presented using the same consideration of weighted
residuals as used in Chapter 1. The numerical implementation of the method will
be described in detail, and used in simple computer codes which can be run in
the type of PC used by engineers. The chapter presents formulations using different
types of elements, i.e. those with constant and linear variations. Special consider-
ation is given to the proper treatment of the corner points. Quadratic elements
are also discussed and implemented in a computer code.

Other sections in this chapter deal with the Poisson equation and the treatment
of distributed sources, problems with more than one surface, multizones applica-
tions, anisotropy and the Helmholtz equations. Computer codes are not provided
for these cases but the existing programs can be easily extended and the boundary
element student can do this as a computational exercise.

2.2 Basic Integral Equation

The starting boundary integral equation required by the method can be deduced
in a simple way based on considerations of weighted residuals, Betti’s reciprocal
theorem, Green’s third identity or fundamental principles such as virtual work.
The advantage of using weighted residuals is its generality; it permits the extension
of the method to solve more complex partial differential equations. It can also be
used to relate boundary elements to other numerical techniques and can be easily
understood by engineers.

Consider that we are seeking to find the solution of a Laplace equation in a
Q (two or three dimensional) domain, (figure 2.1)

Viu=0 in Q (2.1
with the following conditions on the I' boundary

(i) ‘Essential’ Conditions of the type u=ii on I 22)
(i1} ‘Natural’ Conditions such as g =du/0n=qg on I, '

where n is the normal to the boundary, I' =I'; + I', and the dashes indicate that

those values are known. More complex boundary conditions such as combination
of the above two, i.e.

au+ fqg=r (2.3)
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Figure 2.1 Geometrical definitions for Laplace equation

where «, § and y are known parameters, can be easily included but they will not
be considered now for simplicity’s sake.

In principle the error introduced in the above equation if the exact (but
unknown) values of # and g are replaced by an approximate solution can be
minimized by orthogonalizing them with respect to a weighted function u*, with
derivatives on the boundary ¢* = du*/on.

In other words if R are the residuals, one can write in general that

R=V?u#0
R,=u—i#0 (2.4)
Ry=q-q#0

where u and g are approximate values. (The fact that one or more of the residuals
may be identically zero does not detract from the generality of the argument.)
The weighting can now be carried out as shown in Chapter 1, i.e.

f Ru*dQ= | Ryu*dl— | R\g*dl' (2.5)
Q I I

or,

f (Vi dQ= | (g~ qu*dl — | (u—i)g*dl (2.6)
Q 5 0
Integrating by parts the left hand side of this equation gives,

ou ou* _ -
Mf{v __}dgz—f qu*dl“——jqu*dr— j ug* dl' + f ag* dI’
Q axkaxk s Iy It m
(2.7)
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where k=1, 2, 3 and the so-called Einstein’s summation for repeated indexes has
been used. Integrating by parts again the term on the left hand side one obtains,

[ (V3u*udQ = — | qu*dl — [ qu*dT + | ug* dU + | iig* dT’ (2.8)
Q > I I r

This is an important equation as it is the starting point for the application of the
boundary element method. Notice that equation (2.8) is the same as Green’s
theorem (equation (1.18)) after substitution of equation (2.1) and once the
boundary conditions are applied. QOur aim is now to render formula (2.8) into a
boundary integral equation. This is done by using a special type of weighting
function u* called the fundamental solution.

Fundamental Solution

The fundamental solution u* satisfies Laplace’s equation and represents the field
generated by a concentrated unit charge acting at a point ‘i’. The effect of this
charge is propagated from i to infinity without any consideration of boundary
conditions. Because of this the solution can be written

Viu* + A'=0 (2.9)

where A’ represents a Dirac Delta function which tends to infinity at the point
x = x' and is equal to zero anywhere else. The integral of A’ however is equal to
one. The use of Dirac delta function is an clegant way of representing unit
concentrated charges as forces when dealing with differential equations.

The integral of a Dirac delta function multiplied by any other function is equal
to the value of the latter at the point x’. Hence

Ju(V2u*) dQ = [ u(—A) dQ = —u' (2.10)

Q Q

Equation (2.8) can now be written as,
W+ [ ug*dU + [ tig*dU = | qu*dT" + | qu* dl’ (2.11)
I's I I Ir

It needs to be remembered that equation (2.11) applies for a concentrated charge
at ‘i’ and consequently the values of u* and g* are those corresponding to that
particular position of the charge. For each other x’ position one will find a new
integral equation.

For an isotropic three dimensional medium the fundamental solution of
equation (2.9) is

u*-l

= 2.12
47r ( )
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and for a two dimensional isotropic domain, it is

u* =iln<l) (2.13)
2n I3

where r is the distance from the point x* of application of the delta function to
any point under consideration.

It is easy to check that solution (2.12) and (2.13) satisfy the three and two
dimensional Laplace equations. Consider for instance the three dimensional
equation in terms of polar coordinates after neglecting terms which are zero due
to symmetry of the solution, i.c.

Fu* 2 0u*

Viu* - = =
ot r or

—A (2.14)

Simply by substituting solution (2.12) into (2.14) we can check that the equation
is satisfied for any value of r different from zero. For the case where r = 0 we need
to carry out the integration around a sphere of radius ¢ and then take ¢ to zero.
Consider that the sphere has an Q, domain, and integrate by parts to express the
Laplacian in terms of boundary fluxes du*/dn, i.c.

* *
[ (V2u*)dQ = | (Q“—> ar— {2 ar (2.15)
Q. £\ on r. or

Notice that n=r on the surface of the sphere.
Substituting now the fundamental solution (2.12) into (2.15) and making r (or
g) tend to zero gives

*
lim {f 0w’ dr}zlim {j ——Ldr}
e~0 (. Or em0 (1, 4ne?
4ne?

=lin; {_mz} =1 (2.16)

Notice that the surface of the sphere is I, =4ne?. Similarly for the two
dimensional case one can define a small circle of radius ¢ and then take the limit
when ¢ -0, ie.

*
lim{ja—u—dl“}:lim{j —idr}
¢=0 (r. On e—o (T 27

=1im{_2_’§}=_1 2.17)

£-0 2ne

Here the perimeter of the small circle is I', = 27e.
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Boundary Integral Equation

We have now deduced an equation (2.11) which is valid for any point within the
Q domain. In boundary elements it is usually preferable for computational reasons
to apply equation (2.11) on the boundary and hence we need to find out what
happens when the point x' is on I'. A simple way to do this is to consider that
the point i is on the boundary but the domain itself is augmented by a hemisphere
of radius ¢ (in 3D) as shown in figure 2.2 (for 2D the same applies but we will
consider a semicircle instead). The point x' is considered to be at the centre and
then the radius ¢ is taken to zero. The point will then become a boundary point
and the resulting expression the specialization of (2.11) for a point on I'. At present
we will only consider smooth surfaces as represented in figure 2.2 and discuss the
case of corners in other sections.

Surface I';

Boundary
point i’

Boundary surface I

(i) Three Dimensional Case. Hemisphere around i

/ “
I

Boundary point i r

Boundary curve I'

1l
B

(ii) Two Dimensional Case. Semicircle around i

Figure 2.2 Boundary points for two and three dimensional case, augmented by
a small hemisphere or semicircle



2.2. Basic Integral Equation 51

It is important at this stage to differentiate between two types of boundary
integrals in (2.11) as the fundamental solution and its derivative behave differently.
Consider for the sake of simplicity equation (2.11) before any boundary conditions
have been applied, i.e.

u' + {ug* dr = [ u*q dI’ (2.18)

r r
Here I' =I', + I, and satisfaction of the boundary conditions will be left for later on.
Integrals of the type shown on the right hand side of (2.18) are easy to deal

with as they present a lower order singularity, i.e. for three dimensional cases the
integral around I, gives:

lim {f qu* dl"} = lim {f q R dl"}
=0 (I =0 (I, 47'[8

2
—lim {q ﬁ}zo (2.19)

£-0 4ne
In other words nothing occurs to the right hand side integral when (2.11) or (2.18)

are taken to the boundary. The left hand side integral however behaves in a
different manner. Here we have around I, the following result,

. . 1
lim {j ug* dl"}zhm {~j u— dl"}
=0 (I, £~ Q I 47[82

. 2me? ,
— lim {~u 422} = (2.20)
g0

They produce what is called a free term. It is easy to check that the same will
occur for two dimensional problems in which case the right hand side integral
around T is also identically equal to zero and the left hand side integral becomes

1im{§ ug* dr}zlim{—j u dl“}
e20 (I, e~0 r. 2me
= lim {«uﬁ}z Ly 2.21)

e~0 2ne

From (2.19) to (2.21) one can write the following expression for two or three
dimensional problems

$u' + fug* dr = | qu* dT (2.22)
r r

where the integrals are in the sense of Cauchy Principal Value.
This is the boundary integral equation generally used as a starting point for
boundary elements.
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2.3 The Boundary Element Method

Let us now consider how expression (2.22) can be discretized to find the system
of equations from which the boundary values can be found. Assume for simplicity
that the body is two dimensional and its boundary is divided into N segments or
elements as shown in figure 2.3. The points where the unknown values are
considered are called ‘nodes’ and taken to be in the middle of the element for the
so-called ‘constant’ elements (figure 2.3(a)). These are going to be the elements
considered in this section, but later on we will also discuss the case of linear
elements, i.e those elements for which the nodes are at the extremes or ends (figure
2.3(b)) and curved elements such as the quadratic ones shown in figure 2.3(c) and
for which a further mid-element node is required.

For the constant elements considered here the boundary is assumed to be
divided into N elements. The values of u and g are assumed to be constant over
each element and equal to the value at the mid-element node. Equation (2.22) can
be discretized for a given point ‘i’ before applying any boundary conditions, as
follows,

N N
Wi+ Y [ugdl =3 {qu*dl (2.23)
j=1r;

r; j=1Ty

The point i is one of the boundary nodes. Note that for this type of element (i.e.
constant) the boundary is always ‘smooth’ as the node is at the centre of the
element, hence the multiplier of «' is 5. I’; is the boundary of the !/’ element.

The u and q values can be taken out of the integrals as they are constant over
each element. They will be called u/ and ¢’ for element ¢’. Hence

N N
Wt Y <j q* dl")uj: > (f u* dF)qj (2.24)
J=1\ry J=1 \f,
Notice that there are now two types of integrals to be carried out over the
elements, i.c. those of the following types

fg*dl  and  [u*dl

r; r;

These integrals relate the ‘i” node where the fundamental solution is acting to
any other ¢ node. Because of this their resulting values are sometimes called
influence coefficients. We will call them HY and GY, i.e.

AY={g*dl; GY= fu*dl (2.25)
T T
Notice that we are assuming throughout that the fundamental solution is applied
at a particular ‘i’ node, although this is not explicitly indicated in u*, ¢* notation
to avoid proliferation of indexes. Hence for a particular *i° point one can write,

D=

N N
u+ Y Hiw=Y GYg (2.26)
Jj=1
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Nodes
element
(a) Constant Elements
Nodes
e ‘
element
'\
! T
(b) Linear Elements
Nodes
2 il vt e \
> s 4 ¢
element

(c¢) Quadratic Elements

Figure 2.3 Different types of boundary elements

If we now assume that the position of i can also vary from 1 to N, ie. we
assume that the fundamental solution is applied at each node successively one
obtains a system of equations resulting from applying (2.26) to each boundary
point in turn.
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Let us now call

oAy hen i #j
H'J:{M when 17 (2.27)
HV+1  wheni=j
hence equation (2.26) can now be written as
Y Hu=Y Gigl (2.28)
Jj=1 ji=1
This set of equations can be expressed in matrix form as
HU =GQ (2.29)

where H and G are two N x N matrices and U, Q are vectors of length N.

Notice that N, values of u and N, values of g are known on I'y and T,
respectively (I, + I, =T'), hence there are only N unknowns in the system of
equations (2.29). To introduce these boundary conditions into (2.29) one has to
rearrange the system by moving columns of H and G from one side to the other.
Once all unknowns are passed to the left-hand side one can write,

AX =F (2.30)

where X is a vector of unknowns u’s and ¢’s boundary values. F is found by
multiplying the corresponding columns by the known values of u’s or ¢’s. It is
interesting to point out that the unknowns are now a mixture of the potential and
its derivative, rather than the potential only as in finite elements. This is a
consequence of the boundary element being a ‘mixed’ formulation and gives an
important advantage to the method over finite elements.

Equation (2.30) can now be solved and all the boundary values are then known.
Once this is done it is possible to calculate any internal value of u or its derivatives
The values of u’s are calculated at any internal point ‘i’ using formula (2.11) which
can be written as,

ui:jqu* dr—juq* ar (2.31)
r

r

Notice that now the fundamental solution is considered to be acting on an internal
point ‘i” and that all values of u and ¢ are already known. The process is then
one of integration (usually numerically). The same discretization is used for the
boundary integrals, i.e.
N N
u'= Gligl— Y AW (2.32)
‘ =1 =1

J

J

The coefficients G and A" have been calculated anew for each different internal
point.



2.3. The Boundary Element Method 55

The values of internal fluxes in the two directions, say x, and x,, q,, = 0u/0x,
and q,, = 0u/0x,, are calculated by carrying out derivatives on (2.31), i.e

o[ ouY oury oq*\
D=2 = ar — fu( 2 ) ar
(@) <6x1> jq<6x1> £u<6x1> (2.33)

P u* i B E i
(4x:) —<0x2> 15- (6x2> £u<6x2> ar

Notice that the derivatives are carried out only on the fundamental solution
functions u* and g* as we are computing the variations of flux around the ‘i’ point.
The boundary integrals are discretized into integrals along the elements.

o (@)-E e () e

()£ (3o ()

The kernels to be integrated along the elements are

ou*\' 1 1
— 2.35
(ax,) 2n a =T (233)
and
og*\ 1 0 1
Ll == " ——(ryn, tr;,n
<6x1) 27 0x, < r (ram 2 2)>
= 2;,«2 ’2 — 1)”|+ 2r,1r‘2n2] (236)
oq*

1
e L0 Dm 2]
2

where r, indicates derivative at the integration point; i.e.

3x,, g

and n,, n, are the components of the unit normal. The integration of the expres-
sions given in (2.36) is done numerically using a standard Gaussian quadrature.

Evaluation of Integrals

Integrals like G¥ and A" in the above expressions can be calculated using numerical
integration formulae (such as Gauss quadrature rules) for the case i # j. For the
element i = j however the presence on that element of the singularity due to the
fundamental solution requires a more accurate integration. For these integrals it
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Figure 2.4 Element coordinate system

is recommended to use higher-order integration rules or a special formula (such
as logarithmic and other transformations which will be discussed later on).

For the particular case of constant elements however the A" and G" integrals
can be computed analytically. The H* terms for instance are identically zero, as
the normal n and the element coordinate are always perpendicular to each other, i.c.

A= fgrar= [ 202ar =0 @.37)

r; r

The integrals in G* require special handling. For a two dimensional element for
instance they are

G [urar=" fm () 2.38)
2 r

K,

In order to integrate easily the above expression one can change coordinates to a

homogeneous ¢ coordinate over the element (figure 2.4) such that,
e ‘ : l’ (2.39)
> .

where ! is the element length.
Hence taking into account symmetry (2.35) can be written

Gi= 1" 1n<1> ar=2" 1n<1> dr
27 Point 1 r T Nodei r
< ) il“<51/2) -
( )[ln<l/2> +] “’(E) dﬁ} 240
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The last integral is equal to 1, i.e.

i L) (L
= ()] -

For more complex cases special weighted formulae are used. The other integrals
{i.e. for i #j) can be calculated using simple Gauss quadrature rules. In the two
dimensional codes described in this chapter a 4 points rule has been used (see
Appendix A).

2.4 Computer Code for Potential Problems using Constant Elements
(POCONBE)

In what follows the above theory will be employed to produce a simple computer
code written in FORTRAN for solving Laplace type problems. The code is valid
for isotropic materials and uses constant elements. The program can be run in any
IBM/PC type XT or AT or compatibles.

Boundary Element codes are substantially different from Finite Element
programs. Their internal organization is somewhat simpler as they do not require
an assembler. They also produce all the boundary values (u’s and g’s) and give
generally very precise solutions.

Main Program

The macro-flow diagram for the POCONBE boundary element code is shown in
figure 2.5. The main program defines the maximum dimensions of the system of
equations, which in this case is 100 and allocates the input channel 5 and the
output channel 6. It calls the following five routines

INPUTPC - This routine reads the input to the program

GHMATPC - It forms the system matrices H and G and rearranges them in
accordance with the boundary conditions into a matrix A. It
also creates the right hand side vector F.

SLNPD — This is a subroutine for solving systems of equations, with
pivoting.

INTERPC - This routine computes the values of potentials and fluxes at
internal points.

OUTPTPC: Outputs the results.

The main routine also reads and opens files for input and output.
The general integer variables used by the program are defined as follows.

N: Number of elements (equal number of nodes for constant elements).
L: Number of internal points where the function is calculated.
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MAIN PROGRAM

< INPUTPC
< GHMATPC
< SLNPD
< INTERPC
Q OUTPTPC

Figure 2.5 Macro flow diagram

J U U UL

KODE: One dimensional array indicating the type of boundary conditions at

the nodes. KODE(J) = 0 means that the value of the potential is known
at node J and KODE(J) =1 signifies that the value of q is known at
the corresponding boundary node.

The following real arrays are used to store data and results.

XM:
YM:

FI:

One dimensional array of x,; coordinates extreme point of boundary
elements.

One dimensional array of x, coordinates extreme point of boundary
elements.

x, coordinates of the nodes. XM(J) contains the x, coordinate of node J.
x, coordinates of the nodes. YM(J) contains the x, coordinates of node J.
Matrix defined in equation (2.29). After application of boundary condi-
tions the matrix A is stored in the same location.

Matrix defined in equation (2.29).

Prescribed value of boundary conditions. FI(J) contains the prescribed
value of the condition at node J. If KODE(J)=0 it means that the
potential is prescribed and if KODE(J)=1 that the g is given for the
element associated with the location in those vectors.
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DFI:  Right hand side vector in equation (2.30). After solution it contains the
values of the unknown u’s and ¢’s.

CX: x, coordinate for internal point where the value of u is required.
CY: x, coordinate for internal point where the value of u is required.
POT: Vector of the potential values for internal points.

FLUXI1,

FLUX2: Vectors of potential derivatives for internal points.

The listing of the MAIN program is as follows:

c
Crwm= - -
c
PROGRAM POCONBE
c
C PROGRAM 1
c
c
C THIS PROGRAM SOLVES TWO DIMENSIONAL (PO)TENTIAL PROBLEMS
C USING (CON)STANT (B)OUNDARY (E)LEMENTS
c
c
CHARACTER*10 FILEIN,FILEOUT
c
DIMENSION X(101),Y(101),XM(100),YM(100),FI(100),DFI(100)
DIMENSION KODE(100),CX(20),CY(20),POT(20),FLUX1(20),FLUX2(20)
[
COMMON/MATG/ G(100,100)
COMMON/MATH/ H(100,100)
COMMON N,L,INP,IPR
c
c SET MAXIMUN DIMENSION OF THE SYSTEM OF EQUATIONS (NX)
[ (THIS NUMBER MUST BE EQUAL OR SMALLER THAN THE DIMENSION OF XM, ETC...)
c
NX=100
c
C ASSIGN NUMBERS FOR INPUT AND OUTPUT FILES
c
INP=5
IPR=6
c
C READ NAMES AND OPEN FILES FOR INPUT AND OUTPUT
c
WRITE(*,' (A) ') ' NAME OF INPUT FILE (MAX. 10 CHART.)'
READ(*,' (A) ')FILEIN
OPEN (INP,FILE=FILEIN,STATUS='OLD')
WRITE(*,’ (A) ') ' NAME OF OUTPUT FILE (MAX. 10 CHART.)’
READ(*,’ (A) ')FILEOUT
OPEN(IPR,FILE=FILEOUT,STATUS='NEW')
c
C READ DATA
c
CALL INPUTPC(CX,CY,X,Y,EKODE,FI)
[¢
C COMPUTE H AND G MATRICES AND FORM SYSTEM (A X = F)
c
CALL GHMATPC(X,Y,XM,YM,G,H,FI,DFI,KODE,NX)
c
C SOLVE SYSTEM OF EQUATIONS
c
CALL SLNPD(G,DFI,D,N,NX)
c
C COMPUTE THE POTENTIAL AND THE FLUXES AT INTERNAL POINTS
c
CALL INTERPC(FI,DFI,KODE,CX,CY,X,Y,POT,FLUX1,FLUX2)
c
C PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS
c
CALL OUTPTPC(XM,YM,FI,DFI,CX,CY,POT,FLUX],FLUXZ)
c
C  CLOSE INPUT AND OUTPUT FILES
[
CLOSE (INP)
CLOSE (IPR)
STOP

END
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Routine INPUTPC

All the input required by the program is read in the program INPUTPC and
contained in a file whose name is requested by the main program. The file should
contain the following input lines (using free FORMAT):

(1) Title Line One line containing the title of the problem.

(2) Basic Parameter Line One line containing the number of boundary
elements and the number of internal points where the function is required.

(3) Extreme Points of Boundary Elements Lines The coordinates of the extreme
of the elements read in counterclockwise direction for the case shown in
figure 2.6(a) and in clockwise direction for 2.6(b).

(4) Boundary Conditions Lines As many lines as nodes giving the values of
KODE and the value of the potential at the node if KODE = 0 or the value
of the potential derivative if KODE = 1.

(5) Internal Points Coordinates Lines The x,x, coordinates of the internal
points are read in free FORMAT in one or more lines.

This subroutine prints the title, the basic parameters the extreme points of the
boundary elements and the boundary conditions. The internal point coordinates
are printed in the OUTPTPC routine.

Notice that all input is written in free FORMAT.

c e e
SUBROUTINE INPUTPC(CX,CY,X,Y,KODE,FI)
c
C PROGRAM 2
c
CHARACTER*80 TITLE
COMMON N, L, INP,IPR
DIMENSION CX(1),CY(1),X(1),¥(1),KODE(1),FI(1)
c
C N= NUMBER OF BOUNDARY NODES (=NUMBER OF ELEMENTS)
C L~ NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED
c

WRITE (IPR,100)
100 FORMAT(’ ’,79(’*’))

READ JOB TITLE

noa

READ(INP, ’ (A)’) TITLE
WRITE(IPR,’(A)’) TITLE

READ NUMBER OF BOUNDARY ELEMENTS AND INTERNAL POINTS

aon

READ (INP, *)N,L
WRITE (IPR,300)N,L

300 FORMAT(//’ DATA’//2X,’NUMBER OF BOUNDARY ELEMENTS =',I3/2X,‘NUMBER
1 OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED =’,13)

READ COORDINATES OF EXTREME POINTS OF THE BOUNDARY ELEMENTS
IN ARRAYS X AND Y

Qoo

WRITE (IPR,500)

500 FORMAT(//2X,’COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELE
1MENTS‘, //1X, POINT’ ,7X, *X’,15X,'Y)
READ (INP,*) (X(I),¥(I),I=1,N)
Do 10 1=1,N

10 WRITE(IPR,700)I,X(I),Y(I)

700 FORMAT (2X,I3,2(2X,E14.5))
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(a) Numbering direction for external surface. (b) Numbering direction for internal surface — OPEN
CLOSE DOMAIN (anticlockwise) DOMAIN (clockwise)

Figure 2.6 Numbering directions for external and internal surfaces

c
C READ BOUNDARY CONDITIONS IN FI(I) VECTOR, IF KODE(I)=0 THE FI(I)
C VALUE IS A KNOWN POTENTIAL;IF KODE(I)=1 THE FI(I) VALUE IS A
C KNOWN POTENTIAL DERIVATIVE (FLUX).
c
WRITE (IPR, 800)
800 FORMAT(//2X,’BOUNDARY CONDITIONS’//2X, ’NODE’,6X,’CODE’,7X,’PRESCRI
1BED VALUE")
po 20 I=1,N
READ(INP, *) KODE(I),FI(I)
20 WRITE (IPR,950)I,KODE(I),FI(I)
950 FORMAT(2X,I3,9X,I1,8X,E14.5)

naao

READ COORDINATES OF THE INTERNAL POINTS

IF(L.EQ.0) GO TO 30

READ (INP, *) (CX(I),CY(I),I=1,L)
30 RETURN

END

Routine GHMATPC

The routine GHMATPC forms the G and H matrices of equation (2.29) through
its subroutines EXTINPC and LOCINPC. It then rearranges their columns to
form A matrix and F vector of (2.30).

The subroutines EXTINPC and LOCINPC perform the following functions.

EXTINPC: This subroutine computes the H and G matrix elements by means
of numerical integration along the boundary elements (using 4
points Gauss quadrature).

It calculates all elements except those on the diagonal.

LOCINPC: Only calculates the diagonal elements of G matrix, given by
equation (2.41).
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Notice that as H,, = 0 the diagonal elements of H are simply 3.
It is also important to point out that as the fundamental solution has been

r T
multiplied by 1/(27)

Rearranging the columns of G and H produces the matrix A, which is stored
in the original space used by G. The columns of this matrix are the columns of
H or G which are multiplied by unknown values of u or q. The right hand side
vector F is called DFI in the code and is obtained by multiplying the columns of
G or H by the known values (i.¢. boundary condition values) of q or u respectively.

taken as ln<l> — without (713 — all terms in G and H are effectively

SUBROUTINE GHMATPC(X,Y,XM,YM,G,H,FI,DFI,KODE,NX)
PROGRAM 3

THIS SUBROUTINE COMPUTES THE G AND H MATRICES
AND FORMS THE SYSTEM OF EQUATIONS A X = F

acoanaqaa o

COMMON N,L,INP,IPR
DIMENSION X(1),Y(1),XM(1),YM(1),FI(1),KODE(1)
DIMENSION DFI(1),G{NX,NX),H{NX,NX)

COMPUTE THE NODAL COORDINATES AND STORE IN ARRAYS XM AND YM

aaa

X(N+1)=X(1)

Y(N+1)=Y(1)

DO 10 I=1,N

XM(I)=(X(X)+X(X1+3))/2
10 YM(X)=(Y(X)+¥(1+1))/2

COMPUTE THE COEFFICIENTS OF G AND H MATRICES

aoon

DO 30 I=1,N
PO 30 J=1,N
KK=J+1
IF(1-J)20,25,20
20 CALL EXTINPC(XM(I),YM(I),X(J),Y(J),X(KK),Y(KK),H(1,J),6(1,J)
1,DQ1,DQ2,DU1,DU2,0)
GO TO 30
25 CALL LOCINPC(X(J),Y(J),X(KK),Y(KK),G(I,J))
H(1,J)=3.1415926
30 CONTINUVE

REORDER THE COLUMNS OF THE SYSTEM OF EQUATIONS IN ACCORDANCE
WITH THE BOUNDARY CONDITIONS AND FORM SYSTEM MATRIX A WHICH
IS STORED IN G

e EeRoNoR}

DO §5 J=1,N
IF(KODE(J))55,55,40

40 DO 50 I=1,N
CH=G(1,J)
G(1,J)=-H(I,J)
H(I,J)=~CRH

50 CONTINVE

55 CONTINUE

[sReRe]

FORM THE RIGHT HAND SIDE VECTOR F WHICH IS STORED IN DFl

DO 60 I=1,N

PFI(1)=0.

PO 60 J=1,N

DFI(I)=DFI{I1)+H(I,J)*FI(J)
60 CONTINUE

RETURN

END
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Routine EXTINPC

This subroutine computes the values of the off-diagonal coefficient of H and G
using a 4-point Gauss integration formula (see Appendix A). It also computes,
using the same numerical integration formula, the integrals of the fundamental
solution and its derivatives required for the computation of potentials and fluxes
at internal points (equations 2.35 and 2.36).

Consider now that instead of the system x; —x, we use an x—y system of
coordinates. In this case X1, X2, Y1, Y2 are going to be the coordinates of the
extreme points of each element considering them in clockwise (open domain) or
anticlockwise manner (closed domain).

Using numerical integration and changing to a dimensionless system of
coordinates the G and HY terms for each element and collocation point can be
written as,

Gi— i m( 1 )w VX1 —X2)% + (Y1 - Y2)
- (RA)/) 2

k=1

i i i(ln( 1 >Wk\/(X1—X2)2+(Y1~Y2)2

Kk=1dn RA), 2
4
=Y — (RD1*ETAI + RD2*ETA2)
k=1 (RA)k
JX1T—X2) + (Y1 — Y2)?
2
where
RDI = r, = Zx—XP
(RA),
RD2 = r, = P2~ 1F
(RA),

w, is the weighting for each point, XP, YP are the coordinates of the collocation
point and ETA1, ETA2 are the components of the unit normal. The values w,
and the location of the k points over the element are given in Appendix A.

SUBROUTINE EXTINPC(XP,YP,X1,Y1,X2,Y2,H,G,DQ1,DQ2,DU1,DU2,K)
PROGRAM 4

THIS SUBROUTINE COMPUTES THE INTEGRAL OF SEVERAL NON-SINGULAR
FUNCTIONS ALONG THE BOUNDARY ELEMENTS USING A FOUR POINTS

GAUSS QUADRATURE

WHEN K=0, THE OFF DIAGONAL COEFFICIENTS OF THE H AND G MATRICES ARE
COMPUTED

WHEN K=1, ALL THE COEFFICIENTS NEEDED FOR COMPUTATION OF THE POTENTIAL
AND FLUXES AT INTERNAL POINTS ARE COMPUTED (G,H,El1,E2,F1,F2)

RA= RADIUS = DISTANCE FROM THE COLLOCATION POINT TO THE
GAUSS INTEGRATION POINTS ON THE BOUNDARY ELEMENT
ETA1,ETAZ = COMPONENTS OF THE UNIT NORMAL TO THE ELEMENT
RD1,RD2,RDN = RADIUS DERIVATIVES

acoaoacoaaoan Q0o 0
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[¢
DIMENSION XCO(4),YCO(4),GI(4),0ME(4)
DATA G1/0.86113631,-0.86113631,0,.33998104,-0.33998104/
DATA OME/0.34785485,0,34785485,0.65214516,0.65214515/
c

AX=(X2~X1)/2.
BX={X2+X1)/2.
AY=(Y2-Y1)/2.
BY=(Y2+Y1)/2.
SL=SQRT{AX**2+4AY*%2)
ETA1=AY/SL
ETA2=-AX/SL
G=0.

H=0.

DU1=0.

Du2=0.

pQi=0.

DQ2=0.

c
C COMPUTE G, H, DQ1, DQ2, DUl AND DUZ COEFFITIENTS
c
DO 40 I=1,4
XCO(1)=AX*GI(I)+BX
YCO(X)=AY*GI(1)+BY
RA=SQRT ( (XP-XCO(1))*%2+(YP-YCO(I))**2)
RD1={XCO(I)~XP)/RA
RD2=(YCO(1)~YP)/RA
RDN=RD1*ETA1+4RD2%ETA2
IF(K) 30,30,10
10 DU1=DUI+RDI*OME(I)*SL/RA
DU2=DU2+RD2*OME (I ) *SL/RA
DQ1=DQ1-((2.%RD1%%2-1, )¥ETA1+42,*RD1%RD2¥ETAZ2 ) *OME( 1) #*SL/RA**2
DQ2=DQ2-( (2.*%RD2%%2-1, ) *ETA2+2, *RD1%RD2#ETA1 ) #OME( 1) *SL/RA%*2
30 G=G+ALOG(1/RA)*OME(1)*SL
40 H=H-RDN*OME(I)*SL/RA
RETURN
END

Routine LOCINPC

This routine simply computes equation (2.41) to obtain the diagonal ¢lements of
G. As we have used throughout the fundamental solution In(1/r), the formula has
to be multiplied by 2=, i.e. (2.41) becomes,

Gi= l{lnl-f- 1}
/2

Commmmm - ———

SUBROUTINE LOCINPC(X1,Y1,X2,Y2,G)

PROGRAM 5

THIS SUBROUTINE COMPUTES THE VALUES OF THE DIAGONAL
COEFFITIENTS OF THE G MATRIX

anooan

AX=(X2-X1}/2.
AY={Y2-Y1)/2.
SR=SQRT{AX**2+AY*%2)
G=2*SR*(1.-ALOG(SR))
RETURN

END

Routine SLNPD

This is a standard routine given in reference [10] which can solve the system of
equations using pivoting if needed. If the matrix A has a zero in the diagonal it
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will interchange rows, deciding that the system matrix is singular only when no
row interchange will produce a non-zero diagonal coefficient. If this happens it
will give a message indicating a singularity in that row.

After elimination the results are stored in the same right hand side vector DFT.

SUBROUTINE SLNPD(A,B,D,N,NX)
PROGRAM 6

SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

BY THE GAUSS ELIMINATION METHOD PROVIDING
FOR INTERCHANGING ROWS WHEN ENCOUNTERING A
ZERO DIAGONAL COEFICIENT

A : SYSTEM MATRIX

B : ORIGINALLY IT CONTAINS THE INDEPENDENT
COEFFICIENTS. AFTER SOLUTION IT CONTAINS
THE VALUES OF THE SYSTEM UNKNOWNS.

k4

¢ ACTUAL NUMBER OF UNKNOWNS
NX: ROW AND COLUMN DIMENSION OF A

DIMENSION B(NX),A(NX,NX)
TOL=1.E~6

O O 00NN 000 O

N1=N-1

DO 100 K=1,N1
K1=K+1

C=A(K,K)
IF(ABS(C)-TOL)1,1,3
Do 7 J=X1,N

—

TRY TO INTERCHANGE ROWS TO GET NON ZERO DIAGONAL COEFFICIENT

(eReRe]

IF(ABS((A(J,K)))-TOL)7,7,5
5 DO 6 L=K,N
C=A(K,L)
A(K,L)=ALJ,L)
A(J,L)=C
C=B(K)
B(K)=B(J)
B(J)=C
C=A{K,K)
GO TO 3
CONTINUE
GO TO 8

o

-

DIVIDE ROW BY DIAGONAL COEFFICIENT

[eXeXe]

3 C=A(K,K)
DO 4 J=KI1,N

4 A(K,J)=A(K,J)/C
B(K)=B(K)/C

ELIMINATE UNKNOWN X(K) FROM ROW I

Qoo

DO 10 1=K1,N
C=A(I,K)
DO 9 J=KI1,N
9 A(I,J)=A(1,J)-C*A(K,J)
10 B(I)=B(1)~C*B(K)
100 CONTINUE

COMPUTE LAST UNKNOWN

anoon

IF(ABS((A(N,N)))-TOL)8,8,101
101 B(N)=B(N)/A(N,N)

C
C APPLY BACKSUBSTITUTION PROCESS TO COMPUTE REMAINING UNKNOWNS

DO 200 L=1,Nl
E=N-L
Ki=K+1
DO 200 J=KI1,N
200 B(K)=B(K)-A(K,J)*B(J)
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C
C COMPUTE VALUE OF DETERMINANT
C
D=1,
DO 250 I=1,N
250 D=D*A(I,1)
GO TO 300
8 WRITE(*,2) K
2 FORMAT(' s%%* SINGULARITY IN ROW',I5)

300 RETURN

Routine INTERPC

Subroutine INTERPC reorders FI (boundary condition vector) and DFI (unknown
vector) in such a way that all the values of the potential are stored in FI and all
the values of the derivatives or fluxes in DFI.

This subroutine also computes the potential values for the internal points using
formula (2.32) and the fluxes along x, and x, directions using formula (2.34).
Note that because all the H and G terms appear multiplied by 2# the solution for
the internal points is also multiplied by 2.

C

SUBROUTINE INTERPC(FI,DFI,KODE,CX,CY,X,Y,POT,FLUX1,FLUX2)
c
C PROGRAM 7
[o}
C THIS SUBROUTINE COMPUTES THE VALUES OF THE POTENTIAL
C AND THE POTENTIAL DERIVATIVES (FLUXES) AT INTERNAL POINTS
c

COMMON N,L,INP,IPR

DIMENSION FI(1),DFI(1),KODE(1),CX(1),CY(1),X(1),Y(1)

DIMENSION POT{1)},FLUX1(1),FLUX2{(1}
o}
€ REARRANGE THE FI AND DFI ARRAYS TO STORE ALL THE VALUES OF THE
C POTENTIAL IN FI AND ALL THE VALUES OF THE DERIVATIVE IN DFI
C

DO 20 I=1,N

1F(XODE(I)) 20,20,10

10 CH=FI(I)
FI(1)=DFI(I)
DFI(I)=CH
20 CONTINUE

C
C COMPUTE THE POTENTIAL AND THE FLUXES AT INTERNAL POINTS
c

IF(L.EQ.0) GO TO 50

DO 40 K=1,L

POT(K)=0.

FLUX1(K)=0.

FLUX2(K)=0.

DO 30 J=1,N

KK=J+1

CALL EXTINPC{CX(K),CY(K),X(J),Y(J),X(KK),Y{KK),A,B
1,DbQ1,DQ2,DU1,DU2,1)
POT(X)=POT(K)+DFI(J)*B-FI{J)*A
FLUX1(K)=FLUX1(K)+DFI(J)*DU1-FI(J)*DQ1

30 FLUX2(K)=FLUX2(K)+DFI(J)*DU2-FI{J)*DQ2
POT(K)=POT(K)/(2.%3.1415926)
FLUX1(K)=FLUX1(K)/(2.%3.1415926)

40 FLUX2(K)}=FLUX2(K)/(2.%3.1415926)

50 RETURN
END

Routine OUTPTPC

This routine outputs the results. It first lists the coordinates of the boundary nodes
and the corresponding values of potential and its derivatives (or fluxes). It also
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prints the values of potential and fluxes at internal points if any have been
requested.

c 2 e 1 o e ———

SUBROUTINE OUTPTPC(XM,YM,FI,DFI,CX,CY,POT,FLUX1,FLUX2)

PROGRAM 8

THIS SUBROUTINE PRINTS THE VALUES OF THE POTENTIAL AND ITS NORMAL
DERIVATIVE AT BOUNDARY NODES. IT ALSO PRINTS THE VALUES OF THE
POTENTIAL AND THE FLUXES AT INTERNAL POINTS

aoooaQaaa

COMMON N, L, INP,IPR
DIHENSION XH(l) YM(1),FI(1),DPFI(1),CX(1),CY(1)
DIMENSION POT(1}, FLUX](I),FLUX2(1

WRITE(IPR,100)
100 FORMAT(’ ',79('%')//1X, 'RESULTS’//2X, 'BOUNDARY NODES’//8X,'X’,15
1X,'Y’,13X, '"POTENTIAL’, 3X, 'POTENTIAL DERIVATIVE'/)
DO 10 I=1,N
10 WRITE(IPR,200) XM(I),YM(I),FI(I),DFI(I)
200 FORMAT{(4(2X,E14.5))

IF(L.EQ.0) GO TO 30
WRITE(IPR,300)
300 FORMAT(//,2X,'INTERNAL POINTS',//8X,'X’,15X,'Y’,13X, POTENTIAL’,
19X, 'FLUX X',10X,'FLUX Y'/)
DO 20 K=1,L
20 WRITE(IPR,400)CX(K),CY(K),POT(K),FLUX1(K),FLUX2(K)
400 FORMAT(5(2X,E14.5))
30 WRITE(IPR,500)
500 FORMAT(' ',79(’'%'))
RETURN
END

Example 2.1

The following example illustrates how the code can be used to analyse a simple
potential problem. Consider the case of a square close domain of the type shown
in figure 2.8, where the boundary has been discretized into 12 constant elements
with 5 internal points.

The input statements are as follows:

HEAT FLOW EXAMPLE (DATA)

HEAT FLOW EXAMPLE (12 CONSTANT ELEMENTS)

12 5

0. 0. 2. 0., 4. 0. 6. 0, 6. 2. 6. 4.
6, 6. 4. 6. 2. 6, 0. 6. 0. 4. 0. 2,
10

10

10

00

00

0o

10

10

10

0 300

0 300

0 300

2. 2. 2. 4. 3. 3. 4. 2. 4. 4.

The results are printed out as follows.
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HEAT FLOW EXAMPLE (OUTPUT)

EEEATREBARERERRXRREREEEREREREEREERRREESEERRERERXREREK R XX AR XXX XX EREAAIREXXER XS
HEAT FLOW EXAMPLE (12 CONSTANT ELEMENTS)

DATA
NUMBER OF BOUNDARY ELEMENTS = 12
NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED = §

COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS

POINT X Y
1 +00000E+00 +.00000E+00
2 +20000E+01 +00000E+00
3 +40000E+01 «00000E+00
4 .60000E+01 +00000E+00
5 +60000E+01 +20000E+01
6 +60000E+01 +40000E+01
7 +.60000E+01 -80000E+01
8 +40000E+01 +60000E+01
9 +20000E+01 +60000E+0]
10 .00000E+00 .60000E+01
11 +00000E+00 .40000E+01
12 +00000E+00 +20000E+01

BOUNDARY CONDITIONS

NODE CODE PRESCRIBED VALUE
+00000E+00
+00000E+00
»00000E+00
»00000E+00
+00000E+00
+00000E+00
+00000E+00
+00000E+00
+00000E+00
+30000E+03
+30000E+03
12 0 +30000E+03
AAKKEERRREXREXRRKKKRERRERRBERERERERRRERRR R RN R E RN R RN KRR EERRRE KRR RRRRERE KRR KR RN

OO OO -

RESULTS
BOUNDARY NODES

X Y POTENTIAL POTENTIAL DERIVATIVE
+10000E+01 +00000E+00 «25225E+403 +00000E+00
. 30000E+01 . 00000E+00 +15002E+03 .00000E+00
.50000E+0§ . 00000E+00 .47750E+02 .00000E+00
.60000E+01 +10000E+01 «00000E+00 ~.52962E+02
.60000E+01 +30000E+01 «00000E+00 ~.48771E+02
+60000E+01 +50000E+01 . 00000E+00 ~.52962E+02
+50000E+01] +60000E+01 +47750E+02 .00000E+00
+30000E+01 .60000E+01 +15002E+03 .00000E+00
+J0000E+0] .60000E+01 +25225E+03 .00000E+00
.00000E+00 +50000E+01 .30000E+03 .52969E+02
. 00000E+00 .30000E+01 .30000E+03 +4B737E+02
.00000E+00 +10000E+01 +30000E+03 +52969E+02
INTERNAL POINTS
X Y POTENTIAL FLUX X FLUX Y
+20000E+01 .20000E+01 +2002BE+03 -.50303E402 ~.14976E+00
«20000E+01 +40000E+01 +20028E+03 -.50303E+02 +14974E+00
+30000E+01 »30000E+01 +15001E+03 -.50215E+02 -.40360E-05
+40000E+01 +20000E+01 +99740E+02 -.50306E+02 +14564E+00
+40000E+01 .40000E+01 +99740E+02 -.50306E+02 -+145664E+00

233333333223 RS 4 R4 R 2224232222222 22 222222222222 2222222222222 22 L)

Notice the excellent agreement of the results with the exact solution given in
figure 2.7(a)), when the coarseness of the mesh and the simplicity of the model
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q=0
» u=0
u=300 ~»]
PR ) 6
q =50 q= —50
q=0/
} 6 —{
(a) Definition of the Problem
9 8 7
-l + A _ammanany -
10¢ $8

ps _I_ _l_. J Boundary
nodes
ne + ®%5

12 @ Internal points @4
e o L . - —>
1 2 3

(b) Discretization into elements and internal nodes

q=0

\

u =300 ~*]

=0
(c) Boundary conditions

Figure 2.7 Simple potential problem
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are considered. On the two vertical sides the fluxes are close to —50 and 50 as
expected and on the horizontal sides the value of the potential is similar to the
analytical solution which varies linearly from 300 on the left hand side to 0 on
the right, The accuracy of the internal point resuits is however even more
remarkable and this is due to the way in which these results are computed using
formula (2.32), i.e. they are like a weighted average of the boundary values.

2.5 Linear Elements

Up to this section we have only considered the case of constant elements, i.e. those
with the values of the variables assumed to be the same all over the element. Let
us now consider a linear variation of u and g for which case the nodes are considered
to be at the ends of the element as shown in figure 2.8.

The governing integral statement can now be written as,

cu' + [ ug* dT = [ u*q dT’ (2.42)
r r

Notice that the 1 coefficient of u' has been replaced by an unknown ¢’ value. This
is because ¢’ = } applies only for a smooth boundary. The value of ¢’ for any other
boundary can be proved to be,

= 9 (2.43)

where 8 is the internal angle of the corner in radians. This result can be obtained
by defining a small spherical or circular region around the corners and then taking
the radius of them to zero (similar to what has been shown in section 2.2). Another
possibility is to determine the value of ¢' implicitly (see section 2.6) and in this
case it is not required to calculate the angle.

After discretizing the boundary into a series of N elements equation (2.42) can
be written

N N
cul+ Y [ugrdl =3 [u*qdl (2.44)
=i

£ j=1r;

The integrals in this equation are more difficult to evaluate than those for the
constant element as the u’s and ¢’s vary linearly over each I'; and hence it is not
possible to take them out of the integrals.
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-« Nodal value
Nodal value of of uorg
uorq -

=1
e——— (2 ——m e [[D ]

ke /

1

(a) Linear Element Definitions

1M @

element j+2
element j

(2)
M
(b) Element Intersection

Figure 2.8 Linear element. Basic definitions

The values of 4 and g at any point on the element can be defined in terms of
their nodal values and two linear interpolation functions ¢, and ¢,, which are
given in terms of the homogeneous coordinate & as shown in figure 2.8(a),i.e.

1
u(l) = u' + ¢u* =[¢,¢,] {uz}
u (2.45)

4 = 1" + 20> = mm{jz}

¢ is the dimensionless coordinate varying from — 1 to + 1 and the two interpolation
functions are
¢ =3(1-28)  ¢=31+¢) (2.46)
Let us consider the integrals over an element . Those on the left hand side
can be written as,

J ugdr =] (416214 dr{zz} ~ [Wh] {:} (2.47)

r;
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where for each element ‘j° we have the two terms,

hi = j ¢q* dlr (2.48)
r;
and
W= | ¢,q* dl (2.49)
r;

Similarly the integrals on the right hand side give

1 1
[ qu dT = [ [¢,¢,Ju* dr{qz} = [4¥g¥] {q} (2.50)
r; r; q q
where
gi= | ¢u*dl 2.51)
ry
and
g4 = ¢pu*dl (2.52)
]

Treatment of Corners

A domain discretized using boundary elements will present a series of corners
which require special attention as the conditions on both sides may not be the same.

When the boundary of the domain is discretized into linear elements, node 2
of element ¢’ is the same point as node 1 of element 4§+ 17 (figure 2.8(b)). Since
the potential is unique at any point of the boundary, u? of element §’ and u* of
clement j + 17 are both the same. However, this argument can not be applied as
a general rule to the flux, as there are boundary points for which the flux does
not have a unique value. This takes place at points where the normal to the
boundary is not unique (corner points). It may also happen that the flux prescribed
along a smooth boundary presents discontinuities at certain particular points.
While corners with different values of the flux at both sides exist in many practical
problems, discontinuous values of the flux along a smooth boundary are seldom
prescribed.

To take into account the possibility that the flux of node 2 of an element may
be different from the flux of node 1 of the next element, the fluxes can be arranged
in a 2n array.

Substituting equations (2.47) and (2.50) for all %’ elements into (2.44) one
obtains the following equation for node “i’.

ul ql
2 2

o o . u L , q
cul +[AMH?. A} =[G"G... 6PN 2.53)

HN qZN
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where HY is equal to the hY term of element ° plus the h¥~' term of element
j — 1°, Hence formula (2.53) represents the assembled equation for node ‘i’. Note
the simplicity of this approach. Equation (2.53) can be written as,

S N o~ . 2N I .
cul+ ), B = ), GYg’ (2.54)
R =

j=1

Similarly, as was previously shown (equation (2.28)), this formula can be written as

N o ZN o
Y Hiy=Y Gigl (2.55)

j=1 j=1
and the whole set in matrix form becomes
HU = GQ (2.56)

where G is now an N x 2N rectangular matrix.

Several situations may occur at a boundary node: First that the boundary be
smooth at the node. In such a case both fluxes ‘before’ and ‘after’ the node are the
same unless they are prescribed as different, but in any case, only one variable will
be unknown either the potential or the unique flux. Second, that the node is at a
corner point. In this case four different cases are possible depending on the
boundary conditions:

(a) Known values: fluxes ‘before’ and ‘after’ the corner.
Unknown value: potential

(b) Known values: potential, and flux ‘before’ the corner.
Unknown value: flux ‘after’ the corner

(c) Known values: potential, and flux ‘after’ the corner.
Unknown value: flux ‘before’ the corner

(d) Known values: potential.
Unknown values: flux ‘before’ and ‘after’ the corner.

There is only one unknown per node for the first three cases, and two unknowns
for case (d). As long as there is only one unknown per node, system (2.56) can be
reordered in such a way that all the unknowns are taken to the left hand side and
obtain the usuval system of N x N equations, i.e.

AX=F 2.57)

where X is the (N) vector of unknowns; A is the (N x N) matrix of coefficients
which columns are columns of the matrix H, and columns of the matrix G after
a change of sign or sum of two consecutive columns of G with opposite sign when
the unknown is the unique value of the flux at the corresponding node. F is the
known vector computed by the product of the known boundary conditions and
the corresponding coefficients of the G or H matrices.
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When the number of unknowns at a corner node is two (case (d}), one extra
equation is needed for the node. The problem can be solved using the idea of
‘discontinuous’ elements [11] presented in section 2.7.

2.6 Computer Code for Potential Problems using Linear Elements
(POLINBE)

Although this code has many routines which are similar to those developed for
the constant element case (POCONBE), there are some parts which require
modification.

Main Program

The integer variables have the same meaning as in the constant elements program.
The same can be said for the real arrays except for the mid-point coordinates XM
and YM that are not needed as now the nodes are at the inter-element junction.
Arrays FI and DFI now have a different meaning. The dimension of FI is (N)
while the dimension of DFT is (2N). Prescribed boundary conditions are read in
DFI (two per element). F1 is used as the right hand side vector that after solution
contains the values of the unknowns. Finally both vectors are reordered to put
all the values of the potentials in FI and all the values of the fluxes in DFI as was
done for constant elements. Now, however FI contains one potential and DFI
two fluxes, per node.

The program allows for the flux ‘before’ and ‘after’ any node to be different.
When two, equal or different, fluxes are prescribed at a node the potential is
computed; if the potential and one flux are prescribed, the other flux is computed;
and in the case that only the potential is prescribed, both fluxes are considered
to be equal. It should be noticed that in problems with only one uniform region,
the case of potential prescribed and two different unknown values of the flux will
only take place in a corner where the potential is prescribed along the two elements
that join at that corner. This situation is not {requent and since the potential
would be known along two different directions emerging from the corner, the
potential derivatives along these two directions would be known and consequently
the flux along any direction would also be known. Thus, the three variables would
be known at that corner and hence any two of them can be prescribed and the
third will be computed. Notice that only for the case of a singularity on the corner
would one require replacing the corner node by two different nodes inside each
of the two adjacent elements.

The listing is as follows:
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c -
c
PROGRAM POLINBE
c
C PROGRAM 9
[of
C THIS PROGRAM SOLVES TWO DIMENSIONAL (PO)TENTIAL PROBLEMS
C USING (LIN)EAR (B)OUNDARY (E)LEMENTS
o
CHARACTER*10 FILEIN,FILEOUT
COMMON/MATG/ G{80,160)
COMMON/MATH/ H(80,80)
COMMON N,L,INP,IPR
DIMENSION X(81),Y(81),FI(80),DFI(160)
DIMENSION EODE(160),CX(20),CY(20),POT(20),FLUX1(20),FLUX2(20)
c
C SET MAXIMUN DIMENSION OF THE SYSTEM OF EQUATIONS (NX)
¢ NX = MAXIMUN NUMBER OF NODES = MAXIMUN NUMBER OF ELEMENTS
c
NX=80
NX1=2*NX
c
C ASSIGN NUMBERS FOR INPUT AND OUTPUT FILES
c
INP=5
IPR=6
[
C READ NAMES AND OPEN FILES FOR INPUT AND OUTPUT
[of
WRITE(*,’ (A) ') ' NAME OF THE INPUT FILE (MAX. 10 CHART.)’
READ(*,' (A) ') FILEIN
OPEN{INP,FILE=FILEIN,STATUS='0LD")
WRITE(*,’ (A) ') ' NAME OF THE OUTPUT FILE (MAX.10 CHART.)}’
READ(*,’ (A) ') FILEOUT
OPEN(IPR,FILE=FILEOUT,STATUS='NEW')
(o}
C READ DATA
c
CALL INPUTPL{CX,CY,X,Y,KODE,DFI)
c
C COMPUTE G AND H MATRICES AND FORM SYSTEM (A X = F)
[
CALL GHMATPL(X,Y,G,H,FI,DFI,KODE,NX,NX1)
c
C SOLVE SYSTEM OF EQUATIONS
[
CALL SLNPD(H,FI,D,N,NX)
[¢
¢ COMPUTE THE POTENTIAL AND THE FLUXES AT INTERNAL POINTS
C
CALL INTERPL(FI,DFI,KODE,CX,CY,X,Y,POT,FLUX1,FLUX2)
c
C PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS
c
CALL OUTPTPL(X,Y,FI,DFI,CX,CY,POT,FLUX1,FLUX2)
c
CLOSE (INP)
CLOSE (IFPR)
STOP
END

Routine INPUTPL

The input subroutine is similar to INPUTPC in POCONBE. Only the boundary
conditions are prescribed in a different way. Now, two boundary conditions per
element are read in array DFI. Thus, each node '/’ may have a different value of
the flux, one as the end node of element ‘j — 1’ and the other as the start node of
element .
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c
SUBROUTINE INPUTPL(CX,CY,X,Y,KODE,DFI)
c
C PROGRAM 10
c
C N= NUMBER OF BOUNDARY ELEMENTS
C L= NUMBER OF INTERNAL POINTS
c
CHARACTER*80 TITLE
COMMON N, L, INP,IPR
DIMENSION CX(1),CY(1),X(1),¥(1),KODE(1),DFI(1)
WRITE (IPR, 100)
100 FORMAT(‘ /,79(’**))
c
C READ JOB TITLE
c
READ (INP, / (A)’) TITLE
WRITE (IPR,’ (A)’) TITLE
c
C READ NUMBER OF ELEMENTS AND INTERNAIL, POINTS
c
READ (INP, *)N,L
WRITE (IFR,300)N,L

300 FORMAT(//’ DATA’//2X,’NUMBER OF BOUNDARY ELEMENTS =',bI3/2X,’NUMBER

1 OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED =‘,I3)
o]
C READ BOUNDARY NODES COORDINATES IN ARRAYS X AND Y
c

WRITE (IPR, 500)

500 FORMAT(//2X,’COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELE

1MENTS,//2X, 'POINT’, 10X, ‘X', 18X, 'Y"’)
READ(INP, *) (X(I),Y(I),I=1,N)
Do 10 I=1,N
10 WRITE(IPR,700)I,X(I),Y(I)
700 FORMAT(3X,I3,2(5X,E14.5))
c
C READ BOUNDARY CONDITIONS IN DFI(I) VECTOR.IF KODE(I)=0
C THE DFI(I) VALUE IS A KNOWN POTENTIAL; IF KODE(I)=1 THE
C DFI(I) VALUE IS A KNOWN POTENTIAL DERIVATIVE (FLUX).
C TWO BOUNDARY CONDITIONS ARE READ PER ELEMENT.
C ONE NODE MAY HAVE TWO DIFFERENT VALUES OF THE
C POTENTIAL DERIVATIVE BUT ONLY ONE VALUE OF THE POTENTIAL
c
WRITE {IPR, 800)

800 FORMAT(//2X,’BOUNDARY CONDITIONS’//15X,f=———=~ FIRST NODE~=~——- .,
19X, ! ~~=m— SECOND NODE~-——~ /17X, * PRESCRIBED' , 20X,  PRESCRIBED' /
2,1X, 'ELEMENT’, 12X, 'VALUE’,7X, CODE’ , 14X, ‘VALUE’ , 7X, CODE")

DO 20 I=1,N
READ(INP,*) KODE(2%I-1),DFI(2%I-1),KODE(2*%I),DFI(2*I)
20 WRITE(IPR,950)I,DFI(2%I-1),KODE(2%I-1),6DFI(2*I) ,6KODE (2%¥I)

950 FORMAT(2X,I3,2(10X,E14.7,5X,11))

c
C READ COORDINATES OF THE INTERNAL POINTS
c

IF(L.EQ.0) GO TO 30

READ (INP, *) (CX(I),CY(I),I=1,L)
30 RETURN

END

Routine GHMATPL

Notice that this routine is similar to the one described in POCONBE with the
main difference that the g% elements are assembled in a N x 2N matrix instead of
an N x N one as was previously the case. This is because two possible values of
flux are considered at each node, one to the left and the other to the right of it.
Then the boundary conditions are applied as described earlier to rearrange the
system of equations and prepare it for solving.
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The diagonal terms in H are computed implicitly. Assuming a constant potential
over the whole boundary the flux must be zero and hence

HI =0 (2.58)

where I is a vector that for all nodes has a unit potential. Since (2.55) has to be
satisfied

N
Hi=—Y HY  (forj#i) (2.59)

ji=1

which gives the diagonal coefficients in terms of the rest of the terms of the H matrix.

The above considerations are strictly valid for close domains. When dealing
with infinite or semi-infinite regions, equation (2.56) must be modified. If a unit
potential is prescribed for a boundless domain the integral

§ prdr (2.60)
l—‘/v

over the external boundary I', at infinity will not be zero and since p* is due to
a unit source, this integral must be (see equation (2.17) when r=¢ - )

| prdll=—1 (2.61)
r,
The diagonal terms for this case are,

N
Hi=1-Y HY  (forj#i) (2.62)

j=1

Notice that as all the terms HY and GY are multiplied by 2 in the program,
because the fundamental solution has been taken as In(1/r), equation (2.62) is also
written in the program as

Hi=2m—- Y HY  (fori#j) 2.63)

i=1

_________________________________________________________________________

SUBROUTINE GHMATPL(X,Y,G,H,FI,DFI,KODE,NX,NX1)

c
C PROGRAM 11
C
C THIS SUBROUTINE COMPUTES THE G AND H MATRICES
C AND FORMS THE SYSTEM OF EQUATIONS A X = F
C H IS A SQUARE MATRIX (N,N); G IS RECTANGULAR (N,2%N)
[+
COMMON N,L,INP,IPR
DIMENSION X(1),Y(1),G(NX,NX1),H(NX,NX),FI(1),KODE(1),DFI(1)
NN=2%N
DO 10 I=1,N
DO 6 J=1,N
6 H(I,J)=0.
DO 10 J=1,NN
10 G(1,J)=0.
c
C COMPUTE THE COEFFICIENTS OF G AND H MATRICES
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aaoan

[sEeNeRoRe]

anaqa

X(N+1)=X(1)
Y(N+1)=Y(1)
DO 100 I=1,N
NF=I+1
NS=I+N-2
DO 50 JJ=NF,NS
IF{JJ-N)30,30,20

20 J=JJ-N
GO TO 40

30 J=J37

40 CALL EXTINPL(X(I),Y(X),X(J),¥(J),X{J+1),Y(J+1),Al1,A2,B1,B2
1,DQ1F},DQ2F1,DQ1F2,DQ2F2,DULF1,DU2F],DU1F2,DU2F2,0)
IF(J-N)42,43,43

42 R(I,J+1)=H(X,J+1)+A2
GO TO 44

43 H(1,1)=H(I,1)+A2

44 H(I,J)=H(I,J)+Al
G(I,2%J-1)}=B1
G(I,2*J)=B2

50 H(I,I)=sB{I1,1}~A1-A2
NF=I+4N~1
NS=1+N
DO 95 JJ=NF,NS
IF(JJ-N)T70,70,60

60 J=JJ-N
GO TO 80

70 J=JJ

80 CALL LOCINPL(X(J),Y(J),X(J+1),Y(J+1),B1,B2)
IF(JJ-NF)82,82,83

82 CH=Bl
B1=B2
B2=CH

83 G(I,2*J-1)=B1

95 G(I,2%J)=B2

ADD ONE TO THE DIAGONAL COEFFICIENTS
FOR EXTERNAL PROBLEMS.

IF(H(1,1)) 98,100,100
98 H(I,1)=6.2831852+H(I,I)
100 CONTINUVE

REORDER THE COLUMNS OF THE SYSTEM OF EQUATIONS IN ACCORDANCE
WITH THE BOUNDARY CONDITIONS AND FORM THE SYSTEM MATRIX A
WHICH 1S STORED IN H

DO 155 I=1,N
DO 150 J=1,2
IF(KODE(2%I-24J))110,110,150

110 IF(I.NE.N .OR. J.NE.2) GO TO 125
JIF(KODE(1)) 115,115,113

113 DO 114 K=1,N
CH=H(K,1)
H(K,1)=-G(K,2%N)

114 G{K,2%N)=-CH
GO TO 150

115 DO 116 K=1,N
H(K,1)=H(K,1)-G(K,2*N)

116 G(X,2%N)=0.
80 TO 150

125 IF(I,EQ.1 .OR. J.GT.1 ,OR. KODE(2*%I-2).EQ.1) GO TO 130
DO 129 K=1,N
H{K,I)=H(K,I)-G(K,2%I-1)

129 G(K,2*I-1)=0.
GO TO 150

130 DO 132 K=1,N
CH=H(K,I-14J)
R(R,I-14J)=-G(K,2%I-2+J)

132 G(K,2%I-24J)=-CH

150 CONTINUE

155 CONTINUE

FORM THE RIGHT RAND SIDE VECTOR F WHICH IS STORED IN FI

DO 160 I=1,N

FI(1)=0.

DO 160 J=1,NN

FI(I)=FI(I)+G(I,J)*DFI(J)
160 CONTINUE

RETURN

END
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Routine EXTINPL

This routine is similar to the one in POCONBE but instead of computing only
one value per element for each coefficient as in POCONBE, it now computes
two values per element, i.e. the parts of the coefficients corresponding to the
adjacent nodes.

SUBROUTINE EXTINPL(XP,YP,X1,Y1,X2,Y2,A1,A2,B1,B2
1,DQ1F1,DQ2F1,DQ1F2,DQ2F2,DU1F1,DU2F1,DU1F2,DU2F2,K)

PROGRAM 12

THIS SUBROUTINE COMPUTES THE INTEGRAL OF SEVERAL NON-SINGULAR
FUNCTIONS ALONG THE BOUNDARY ELEMENTS USING A FOUR POINTS

GAUSS QUADRATURE

WHEN K=0, THE OFF DIAGONAL COEFFICIENTS OF THE H AND G MATRICES
ARE COMPUTED

WHEN K=1, ALL THE COEFFICIENTS NEEDED FOR COMPUTATION

OF THE POTENTIAL AND FLUXES AT INTERNAL POINTS ARE

COMPUTED (Al,A2,B1,B2,F11,F21,F12,F22,E11,E21,E12,E22)

RA= RADIUS = DISTANCE FROM THE COLOCATION POINT TO THE
GAUSS INTEGRATION POINTS ON THE BOUNDARY ELEMENTS
ETAY,ETA2 = COMPUNENTS OF THE UNIT NORMAL TO THE ELEMENT
RD1,RD2,RDN = RADIUS DERIVATIVES

(2B rRo e e ReRoRoNe Rr o NoRoRe Ne Nol o}

DIMENSION XCO(4),YCO(4),GI(4),0ME(4)
DATA GI/0.86113631,-0.86113631,0.33998104,-0,33998104/
DATA OME/0.34785485,0.34785485,0.65214516,0.65214515/

AX=(X2-X1)/2
BX=(X2+X1)/2
AY=(Y2-Y1)/2
BY=(YZ2+Y1)/2
SL=SQRT(AX**¥2+AY*%2)
ETAl= AY/SL
ETA2=-AX/SL
Al1=0.

A2=0.

B1=0.

B2=0.
DQ1F1=0.
DQ2F1=0.
DQ1F2=0.
DQ2F2=0,
DU1F1=0.
DU2F1=0.
DU1F2=0.
DU2F2=0.

COMPUTE THE TERMS TO BE INCLUDED IN THE G AND H MATRICES
OR THE TERMS NEEDED FOR COMPUTATION OF THE POTENTIAL
AND FLUXES AT INTERNAL POINTS

aooaao

DO 40 I=1,4
XCO(I)zAX*GI(I)+BX
YCO(I)=AY*GI(1)+BY
RA=SQRT( (XP-XCO(1I))**2+(YP-YCO(I))**2)
RD1=(XCO(X)-XP)/RA
RD2=(YCO(1)-YP)/RA
RDN=RD1*ETA1+RD2*ETA2
Fl=(1.-6I(1))/2.
F2=(1.+4GI(I))/2,
IF(K) 30,30,10
10 DU1=RD1*OME(I)*SL/RA
DU2=RD2*OME (I)*SL/RA
DQi=~((2.*RD1%%2~1,)*ETA1+2,.%RDI*RD2*ETA2)*OME (1) *SL/RA**2
DQ2=-((2.%¥RD2%%2~1. )*ETA2+2,*RD1*¥RD2*ETA] ) *OME (1) *SL/RA**2
DQIF1=DQ1F1+DQ1*F1
DQ1F2=DQ1F2+DQ1%F2
DQZF1=DQ2F1+DQ2*F1
DQ2F2=DQ2F2+DQ2*F2
DU1F1=DU1F1+DU1%F1
DU1F2=DU1F2+DU1%F2
DU2F1=DU2F14DU2*F1
DUZF2=DU2F2+4DU2%F2
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30 H=RDN*OME(I1)*SL/RA
G=ALOG( 1/RA)*OME(I)*SL
Al=A1-F1*H
A2=A2-F2*H
B1=B1+F1x%G

40 B2=B2+F2%G
RETURN
END

Routine LOCINPL

This routine computes now the part of the elements of the matrix G corresponding
to the integrals along the elements which include the singularity. These integrals
are:

Bl=| ¢, In <1> dr
T, r
! (2.64)
B2= | ¢,In <1> dr
r. r

J

Using the local system of coordinates in figure 2.9, the integrals can be written as

Point (2) 1 1 1
Bl= (1—n)ln(—)dl“zlf(l—n)ln(—)dn
r 0 nl

Point (1)
(2.65)
Point (2) 1 1 1
B2= | r]ln<~>dl“=ljnln(~>dn
Point (1) r 0 nl
113
(2.66)
B2 = : 1 — In(})
202
¢, B
(1) @)
= Q 7 =1
r
/
(= —

Figure 2.9 Linear element local coordinate system
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SUBROUTINE LOCINPL(XI Y1,X2,Y2,B1,B2)

PROGRAM 13

THIS SUBROUTINE COMPUTES THE PARTS OF THE G MATRIX
COEFFICIENTS CORRESPONDING TO INTEGRALS ALONG AN ELEMENT
THAT INCLUDES THE COLLOCATION POINT.

acaaaon

SEP=SQRT( (X2-X1)%%2+(Y2-Y1)*%2)
B1=SEP*(1,5-ALOG(SEP))/2
B2=SEP*(0.5-ALOG(SEP))/2
RETURN

END

Routine INTERPL

This routine replaces the INTERPC program used in POCONBE. It first arranges
all potentials in FI and all their derivatives (or fluxes) in DFI and then computes
the values of potentials and fluxes at the internal points if requested.

G o o i e o ot o 0 B o . G o O . e O e -
SUBROUTINE INTERPL(FI DFI, KODE CX,CY,X,Y,POT,FLUX1,FLUX2)

Cc

C PROGRAM 14

C

C THIS SUBROUTINE COMPUTES THE VALUES OF THE POTENTIAL

C AND THE POTENTIAL DERIVATIVES (FLUXES) AT INTERNAL POINTS

C
COMMON N, L, INP,IPR
DIMENSION FI(1),DFI(1),KODE(1),CX(1),CY(1),X(1),Y(1)
DIMENSION POT(1),FLUX1(1),FLUX2(1)

C

C REARRANGE THE FI AND DFI ARRAYS TO STORE ALL THE VALUES OF THE

C POTENTIAL IN FI AND ALL THE VALUES OF THE DERIVATIVE IN DFI

4

DO 155 I=1,N
PO 150 J=1,2
IF(KODE(2*I~24J))110,110,150
110 IF(I.NE.N .OR. J.NE.2) GO TO 125
IF(KODE(1)) 114,114,113
113 CH=FI(1)
FI(1)=DFI(2%N)
DFI(2%N)=CH
GO TO 150
114 DFI(2%N)=DFI(1)
GO TO 150
125 IF(1.EQ.1 .OR. J.EQ.2 .OR. KODE(2%I-2).EQ.1) GO TO 130
DFI(2%1-1)=DF1(2%1-2)
GO TO 150
130 CH=FI(1-1+J)
FI(I-1+4J)=DFI(2%1~24J)
DFI(2%1~-2+J)=CH
150 CONTINUE
156 CONTINUE

C
C COMPUTE THE POTENTIAL AND THE FLUXES AT INTERNAL POINTS
C
IF(L.EQ.0) GO TO 50
DO 40 K=1,L
POT(K)=0.
FLUX1(K)=0,
FLUX2(K}=0,
DO 30 J=1,N
CALL EXTINPL(CX(K),CY(K),X(J),Y(J),X(J+1),Y(J+1),A1,A2,B1,B2
1,DQ1F1,DQ2F1,DQ1F2,DQ2F2,DU1F1,DU2F1,DUIF2,DU2F2,1)
IF(J-N)32,33,33
32 POT(X)=POT(K)+DFI(2%J~1)%B1+4DFI(2%J)*B2-FI(J)*A1-FI(J+1)%A2
FLUX1(K)=FLUX1(K)+DFI1(2%J-1)*DU1F1+DFI1(2%J)*DU1F2
1-FI(J)*DQIF1-FI(J+1)*DQ1F2
FLUX2(K)=FLUX2(K)+DFI(2%J-1)*DU2F1+DFI(2%J)*DU2F2
1-FI(J)*DQ2F1-FI(J+1)*DQ2F2
G0 TO 30
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33 POT(K)=POT(K)+DFI(2%J-1)*B1+4DF1(2%J)%B2~FI(J)*A1-FI(1)*A2
FLUX1(K)=FLUX1(K)+DFI(2%J-1)*DU1F14DFI (2#J)*DU1F2
1-FI(J)*DQ1F1-FI(1)*DQ1F2
FLUX2(K)=FLUX2(K)+DFI(2%J-1)*DU2F1+DFI(2%J)%DU2F2
1-FI(J)*DQ2F1-FI(1)*DQ2F2

30 CONTINUE
POT(K)=POT(K)/(2.%3.1415926)
FLUX1(K)=FLUX1(K)/(2.%3.1415926)

40 FLUX2(K)=FLUX2(K)/(2.%3.1415926)

§0 RETURN
END

Routine OUTPTPL

This routine is similar to the one described in POCONBE but instead of printing
the mid-point coordinates it now gives directly the values of the coordinates in
the X and Y arrays. It also gives two values for the flux at each boundary node;
one ‘before’ and the other ‘after’ the node.

SUBROUTINE OUTPTPL(X,Y,FI,DFI,CX,CY,POT,FLUX1,FLUX2)

PROGRAM 15

THIS SURQUTINE PRINTS THE VALUES OF THE POTENTIAL AND ITS
NORMAL DERIVATIVE AT BOUNDARY NODES. IT ALSO PRINTS THE
VALUES OF THE POTENTIAL AT INTERNAL POINTS.

[eRoRsReNoNoXe]

COMMON N, L, INP,IPR
DIMENSION X(1),Y¥(1),FX(1),DFI(1),CX(1),CY(1)
DIMENSION POT(1),FLUX1(1)},FLUX2(2)

WRITE(IPR,100)
100 FORMAT(' ',79('*')//2X,'RESULTS'//2X, 'BOUNDARY NODES'//
166X, 'POTENTIAL DERIVATIVE'/
29%,°X',15X,'Y’,12X, '"POTENTIAL’,6X, 'BEFORE NODE',6X,'AFTER NODE'/)
WRITE(IPR,200) X(1),Y(1),FI(1),DFI(2%N),DFI(1)
DO 10 I=2,N
10 WRITE(IPR,200) X(I),Y(I),FI(I),DFI(2%1-2),DFI(2%1-1)
200 FORMAT(5(2X,E14.5))
c
IF(L.EQ.0) GO TO 30
WRITE(IPR,300)
300 FORMAT(//,2X,'INTERNAL POINTS',//9X,'X’',15X,'Y’,12X, POTENTIAL’,
19X, 'FLUX X',10X,’FLUX Y'/)
DO 20 K=1,L
20 WRITE(IPR,400)CX(K),CY(K),POT(K),FLUX1(K),FLUX2(K)
400 FORMAT(5(2X,E14.5))
30 WRITE(IPR,500)
500 FORMAT(' ’,79('2'))
RETURN
END

Example 2.2

The potential problem solved with POCONBE will now be analysed using linear
elements as shown in figure 2.10. The number of elements is still 12 for the linear
{figure 2.10(b)) as well as the constant (figure 2.10(a)). Although the constant
clement solution gives reasonable agreement with the known results, the linear
solution is identical to the analytical one within the precision limits of the computer.
This result was to be expected since the exact solution varies linearly.
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Nodes
9 . 8 7
10 b 6 -529
+.200.3 99.7
ES +
(~50.3) (-50.3)
1 150.0 N
+(-50.3) [ 5 —48.7
- + -
200.3 +99.7
12 ¢ (‘503) ("50.3) $4 —529
T 2 3
1 ]
478
u
1500 (a) Results obtained with
the constant element code
252.2 (POCONBE) 12 elements solution
10 9 8 7
- - »y —50.0
200.0 100.0
114 ®6 —-50.0
{ 4?—50.0)—1_('— 50.0)
_# 50.0
(-50.0)
124 *5 »{ - 500
{ _*300.0 -*700.0 (
(-50.0) (-50.0)
—» - »! - 50.0
1 2 3 4
u 100.0
200.0 (b) Resuits obtained with
the linear element code
300.0 (POLINBE) 12 elements solution

Figure 2.10 Results obtained using constant and linear elements for the heat flow

example
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4 3 q
201.4 100
-+(—52.2) +i—49.2)
149.8
-50.0
-'—(~49.9)
« o
1 2
0
u

{c) Results obtained with
the linear element code

300 (POLINBE) 4 elements solution

Figure 2.10 continued

The data corresponding to the 12 element problem is as follows.

HEAT FLOW EXAMPLE (DATA)

HEAT FLOW EXAMPLE (12 LINEAR ELEMENTS)

12 5

0. 0. 2. 0. 4, 0. 6. 0. 6, 2. 6. 4. 6. 6.
4. 6. 2. 6. 0. 6. 0. 4, 0. 2.
10.10.

10.10.

10, 10.

0 0. 00.

0 0. 0 0.

0 0. 0 0.

10, 10.

10.10.

1 0. 10.

0 300. 0 300

0 300. O 300.

0 300. 0 300.

2, 2. 2. 4. 3. 3. 4. 2. 4. 4

and the output is given by

HEAT FLOW EXAMPLE (OUTPUT)

REXEEXEEEX REEREES EXFERA

HEAT FLOW EXAMPLE (12 LINEAR ELEMENTS)

DATA

NUMBER OF BOUNDARY ELEMENTS = 12
NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED = §
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COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS

POINT X Y
1 .00000E+00 +00000E+00
2 . 20000E+01 +00000E+00
3 .40000E+01 .00000E+00
4 .60000E+01 .00000E+00
] .60000E+01 .20000E+01
6 .60000E+01 .40000E+01
7 .60000E+01 .60000E+01
8 «40000E+01 .60000E+01
9 +20000E+01 +60000E+01
10 +00000E+00 +60000E+01
11 «00000E+00 .40000E+01
12 .00000E+00 .20000E+01

BOUNDARY CONDITIONS

------ FIRST NODE----~ =-~-=-~SECOND NODE~---~--
PRESCRIBED PRESCRIBED
ELEMENT VALUE CODE VALUE CODE
1 .0000000E+00 1 .0000000E+00 1
2 .0000000E+00 1 .0000000E+00 1
3 +0000000E+00 1 .0000000E+00 1
4 .0000000E+00 0 .0000000E+00 0
5 .0000000E+00 0 .0000000E+00 0
6 .0000000E+00 0 .0000000E+00 0
7 .0000000E+00 1 .0000000E+00 1
8 +0000000E+00 1 .0000000E+00 1
9 .0000000E+00 1 .0000000E+00 1
10 «3000000E+03 0 .3000000E+03 0
1 +3000000E+03 0 .3000000E+03 0
12 .3000000E+03 0 .3000000E+03 0

ERRERKRREERARRRERERER R ERRR R R IR RER KRR RAA AR AL RRRRERRRERRRR RN KRR E S
RESULTS
BOUNDARY NODES

POTENTIAL DERIVATIVE

X Y POTENTIAL BEFORE NODE AFTER NODE
. 00000E+00 .00000E+00 . 30000E+03 .50000E+02 .00000E+00
+20000E+01 +00000E+00 +20000E+03 +00000E+00 .00000E+00
+40000E+01 .00000E+00 +.10000E+03 .00000E+00 .00000E+00
.60000E+01 .00000E+00 .00000E+00 .00000E+00 -.50000E+02
«60000E+01 «20000E+01 .00000E+00 -.50000E+02 -.50000E+02
+60000E+01 +.40000E+01 «Q0000E+00 -.50000E+02 ~-.50000E+02
.60000E+01 +60000E+01 .00000E+00 -.50000E+02 ,00000E+00
.40000E+01 «60000E+01 +10000E+03 .00000E+00 .00000E+00
. 20000E+01 .60000E+01 +20000E+03 .00000E+00 .00000E+00
.00000E+00 .60000E+01 +30000E+03 .00000E+00 .50000E+02
.00000E+00 +40000E+01 .30000E+03 .50000E+02 «50000E+02
.00000E+00 +20000E+01 +30000E+03 .50000E+02 . 50000E+02

INTERNAL POINTS

X Y POTENTIAL FLUX X FLUX Y
+20000E+01 +20000E+01 .20000E+03 -.50001E+02 -.69996E-03
+20000E+01 +40000E+01 +20000E+03 -.50001E+02 .89519E-03
+30000E+01 +30000E+01 +15000E+03 ~+.50000E+02 -.99891E~-06
+40000E+01 +20000E+01 +10000E+03 -.50000E+02 ~.34618E-03
+40000E+01 -40000E+01 +10000E+03 -.50000E+02 .34851E-03

EXEREXERRXRBRRNEAREREERRERARREERER AR KRR EXRRERFERXETREXEXREEXEXREXRXRRRRRRAEX

Example 2.3

It is interesting to note that in this case even a simple four elements representation
can give exact results using double value of the flux at the corners (figure 2.10(c)).
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The input in this case is

HEAT FLOW EXAMPLE (DATA)

HEAT FLOW EXAMPLE (4 LINEAR ELEMENTS)

4 3

0. 0. 6. 0. 6. 6. 0. 6.
1 0. 1 0.

0 0. 0 O.

10. 1 0.

0 300. 0 300.

2. 4, 3. 3. 4. 4.

The corresponding output is very accurate taking into consideration the
simplicity of the mesh.

HEAT FLOW EXAMPLE (OUTPUT)

BEXEEBRERRLARKAERARSERSEERTRRRERAXXRAREEERXRRBXBESAE SR EERARR AR EXEARETAAXRNNRRAK
HEAT FLOW EXAMPLE (4 LINEAR ELEMENTS)

DATA
NUMBER OF BOUNDARY ELEMENTS = 4

NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED = 3

COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELEMENTS

POINT X Y
1 .00000E+00 +00000E+00
2 +.60000E+01 «00000E+00
3 +60000E+01 .60000E+01
4 .00000E+00 -60000E+01

BOUNDARY CONDITIONS

------ FIRST NODE--~-- -=---~SECOND NODE~----~-
PRESCRIBED PRESCRIBED
ELEMENT VALUE CODE VALUE CODE
1 .0000000E+00 1 .0000000E+00 1
2 .0000000E+00 0 .0000000E+00 0
3 .0000000E+00 1 +0000000E+00 1
.3000000E+03 0 .3000000E+03

0
BEXXKXEEEEERRRXRARXREREREREEERRRKXRRRK B AR RRAKKERRRKKEERRRRRRRRRERRRKERE KRR ERRE RS
RESULTS
BOUNDARY NODES

POTENTIAL DERIVATIVE

X Y POTENTIAL BEFORE NODE AFTER NODE
+.00000E+00 +00000E+00 .30000E+03 .50000E+02 .00000E+00
+60000E+01 +00000E+00 .00000E+00 .00000E+00 ~.50000E+02
.60000E+01 .60000E+01 . 00000E+00 ~.50000E+02 .00000E+00
«00000E+00 .60000E+01 .30000E+03 . 00000E+00 .50000E+02

INTERNAL POINTS

X Y POTENTIAL FLUX X FLUX Y
. 20000E+01 +40000E+01 .20138E+03 -.52208E+02 .26160E+01
+30000E+01 «30000E+01 +14979E+03 ~.49931E+402 .50752E-06
.40000E+01 .40000E+01 .10001E+03 -.49244E+02 .34782E+00

AEAEXRKEKKRRRKXERRERRRKEKRRREE KRR ERR A SRR SR SRR R RXRXERFXXRERE XX RERIRERR XX RXRTR RN XS
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2.7 Discontinuous Elements

To avoid the problem of having two unknown fluxes at a corner node (for which
only one boundary element equation can be written) the nodes of the two linear
elements which meet at the corner can be shifted inside the two elements. The
nodes remain as two distinct nodes (see figure 2.11) and one equation can be writ-
ten for each node. The potential and the flux are represented by linear functions
along the whole elements in terms of their nodal values and both of them are in
principle discontinuous at the corner. Discontinuous elements are also useful for
situations in which one of the variables takes an infinite value at the end of the
element (for instance at a reentry corner or in fracture mechanics applications).
In such cases the value of the variable at the node shifted from the end of the ele-
ment is finite and can be computed from the system of equations without
numerical difficulties.

The values of  and g at any point on a linear element have been defined in terms
of their values at the extreme points by equation (2.42).

w(é) = ¢1ul + ¢2”2 = [¢,¢,] {Zz}

490 = 6:4" + ,4° = [$,6,] {Z}

If the two nodes of an element have been shifted from the ends distances a and b
respectively as shown in figure 2.11 any of the two equations (2.67) can be
particularized for the nodes.

Nodat value of \ / Nodal value of
uorq \ / uorq

-4~— Nodal value of
u
J,0r g
/
/
/

4

Nodal vatue of c—pm
vorg \\

\
£=1

Figure 2.11 Discontinuous elements
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ua . ¢1(5a) ¢2(fa) ul}
{“b} - [¢1(5b) ¢2(€,,)jl{u2 (2.68)
where £, = (2a/l) — 1 and &, = 1 — (2b/]) are the local coordinates for the nodal
points.

Equation (2.68) can be inserted and after substitution into (2.67) yields the value
of u at any point on the element in terms of the nodal values

ue) = (41921 Q {Z} (269

where

_ 1 I—b —a
Q—l—a~b|:*b l—a]
The same relation can be written for the flux

4(®) = [$,6,] Q gb} (2.70)

After discretizing the boundary into N elements the integral statement for a node
“i” can be written as

u + 2 5 ug* dI' = Z | u*q dr’ | (2.71)

111"

[T¥LL]

The integrals over a discontinuous element “j” are

[ ug* dr = [ [$,¢,1Q q* dT {ZZ} = [h¥ 1 {}
I‘j Fj

2.72)
[ qu* dT = | [¢,¢,] Q u* dT {Z,,}—[g” i {‘;}
l"j Fj

When solving a potential problem continuous and discontinuous elements can be
used together in the same mesh. The total number of nodes will be equal to the
total number of elements plus one additional node per each discontinuous element.

The coefficient ¢’ is equal to 0.5 for the nodes on discontinuous elements. The
integrals hY, hi, gi and g/ along the discontinuous elements given by equation
(2.72) can be computed by the usual Gaussian numerical quadrature when the
node “‘i’’ does not belong to the element. When ““i** is one of the nodes of the
dlscontmuous element hY =hJ =0 and g7 and g/ can be easily obtained by
analytical integration. The element is subdivided into two parts one at each side
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of the node. The resulting integrals consist of the same basic integrals as those
of the regular linear elements given by equation (2.66).

2.8 Quadratic and Higher Order Elements

It is usually more convenient for arbitrary geometries to implement some type of
curvilinear elements. The simplest of these are the three noded quadratic elements
which require working with transformations. Consider the curved boundary shown
in figure 2.12 where I is defined along the boundary and the 7 position vector is
a function of the cartesian system, x,, x,. The variables u or g can be written in
terms of interpolation functions which are functions of the homogeneous coordinate

¢, le. :

f'ul A

u@)=u' + ¢u* + du’ = [, d,h3] { u* ¢
U3 2.73)
rql<

a€)= 19" + $20° + ¢3¢° = [$10.951 {¢* ¢
q3

where the interpolation functions are
o =HC—1)  ¢=(1-O1+&);  Ps3=%(1+¢) (2.74)

~f

- - -
Y=I’(X1 . xz)

- X1

Figure 2.12 Curved boundary
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90
u or q variation
x2
M &=-1 =0 {=+1
t
{ 2 =
A -
! ! L »- -®
: : (3) : — M (2) (3)
A
L —
: [ : /2 172
A A 1 — X

Reference system

Figure 2.13 Quadratic element

These functions are quadratic in ¢ and give the nodal values of the variable u or
q when specialized for the nodes; i.e. with reference to figure 2.13

Node [ & ¢, ¢, 45

1 -1 1 0 0

(2.75)
2 0 0 1 0
3 +1 0 0 1

The integrals along any j’ element are similar to those computed for the linear
element, but there are now three nodal unknowns and the integration requires
the use of a Jacobian. Consider for instance an integral for the H type terms, i.e.

1

u
[ u(@)g* dr = | [§,¢,¢519* dT { v’
r; r; 2
ul
= [HihhiIT 4 u? (2.76)
u3

where
W= [ ¢uq*dls W= {¢uq*dls  hY=[ sq*dl @.77)
r; T ry
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The evaluation of these terms requires the use of a Jacobian as the ¢, functions

are expressed in terms of &, but the integrals are functions of I'. For a curve such
as given in figure 2.12, the transformation is simple,

_ () (dx_>} _
dl"_{\/<dé> % d = |G| d¢ (2.78)

where |G| is the Jacobian. Hence one can write,

Node 2

W= e dr= | o)) de 2.79)

od

Formulae such as (2.66) are generally too difficult to integrate analytically and
numerical integration must be used in all cases, including those ¢lements with a
singularity.

Notice that in order to calculate the value of the Jacobian |G| in (2.78) one
needs to know the variation of the x, and x, coordinates in terms of &. This can
be done by defining the geometrical shape of the element in the same way as the
variables u and ¢ are defined, i.e. using quadratic interpolation,

Xy = ¢1x} + ¢2’Cf + ¢)3x?

(2.80)
Xy = ¢2X§ + ¢2x§ + ¢2x2

where the superscript indicates the number of the node. This is a similar concept
to the isoparametric elements commonly used in finite elements.

Cubic Elements

Elements of order higher than quadratic are seldom used in practice, but they
may be interesting in some particular applications. Because of this we will briefly
describe the case of elements with cubic variation of geometry, and u or g variables.
In this case the functions are described by taking four nodes over each element
(figure 2.14).

u=¢u' + o,u’ + diu’ + pu*

1 2 3 4 (2.81)
=019 +$,9" + ¢39° + daq
and similarly
Xy =@, X3+ ¢,x% + Pix3 + P x?
1 d)l 1 ¢2 1 ¢3 1 ¢4 1 (282)

Xy =@y X5+ ¢X5 + P3x3 + Pux5
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x2
3
2
3 4
1
- X1

E=-1 &=-1/3 ll E=+1/3 E=+1
*>— *>—l——e- ®

(1) (3) (4) (2)

Reference element

Figure 2,14 Cubic elements with four nodes

where the interpolation functions are,

H

¢r1=76(1 =O[—-10+9E&+ )] ¢, =14l
¢3 = fe(l — &)1 —3¢) bq=T1e(1 — &)1 +3¢)

which can be specialized at the nodes as follows,

Node ¢ é, 0P b3 Pa

1 —1 1 0 0 0
2 —1/3 0 1 0 0
3 1/3 0 0 1 0
4 0

14+ E[—10+9(E2 +

)

(2.83)

(2.84)
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Another possibility with cubic elements is to define the variation of u or ¢ in
terms of the function and its derivative along the element, at the two end points
—i.e nodes 1 and 2 — as shown in figure 2.15. The corresponding function for u
(same applies for ¢ and x,x;) is then given by

1 2
u=¢u +¢2<§~;> + ¢pyu? +¢4<g%) (2.85)

with

¢,
s

where [ is the element length.

LE—-1)? 2 = —3E—-1) 1
T(f ) (€ +2) o el (4 FE+1) 2.86)
i

C+D(E-2)  da=—dCE+DE-1)

I

X2

L]
i
;
;
1 Node 1 E
1 !
i :
i !
] :
] .
i !
i :
i :
i '
. . i
{=-1 =0 &= +1
. } @
Node 1 Node 2

X

k————— 2 i 112

Reference elemnent

Figure 2.15 Cubic elements with only two nodes
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This last type of cubic element could be used in cases where we wish to have
a correct definition of the derivative along I', for instance to calculate fluxes in
that direction, or if we prefer to reduce the number of nodes along the element.
In some cases it may still be better to continue defining the geometry with four
nodes as it is generally more difficult to have accurate results for the slopes.

2.9 Computer Code for Potential Problems using Quadratic Elements
(POQUABE)

In what follows a FORTRAN code for potential problems using quadratic elements
is described. The program has the same organization as the two previously studied.

All variables in the code have the same meaning as for the linear element
program (POLINBE). FI and DFT have a slightly different form. The dimension of
FI is (N), N being the number of nodes and that of DFI is (3NE), where NE is
the number of elements, The prescribed boundary conditions are read in DFI
(three per clement).

The program allows for the values of flux at both sides of the nodes connecting
two elements to be different. Then, (i) when both fluxes are prescribed as different
at both sides of the node, the potential is the only unknown; (ii) when the potential
and one flux are prescribed, the other flux is the unknown and (iii) if only the
potential is prescribed, one value of the flux is the unknown and will be the same
on both sides of the node. Thus, the situation at corner nodes of quadratic elements
is the same as for linear elements.

Main Program

The program follows the same structure of the constant and linear potential codes.
The listing is as follows.

oo
1
1
1

PROGRAM POQUABE
PROGRAM 16

THIS PROGRAM SOLVES TWO DIMENSIONAL (PO)TENTIAL PROBLEMS
USING (QUA)DRATIC (B)OUNDARY (E)LEMENTS.

angaoanon

CHARACTER*10 FILEIN,FILEOUT

COMMON/MATG/G(1060,150)

COMMON/MATH/H(100,100)

COMMON N,L,INP,IPR

DIMENSION X{101),Y(101)

DIMENSION DFI(150),FI(100),KODE(150)

DIMENSION CX(20),CY(20),POT(20),FLUX1(20),FLUX2(20)

SET MAXIMUN DIMENSION OF THE SYSTEM OF EQUATIONS (NX)
NX=z MAXIMUN NUMBER OF NODES= 2*MAXIMUN NUMBER OF ELEMENTS
NX1= 3*MAXIMUN NUMBER ELEMENTS

oaQan

NX=100
NX1=150



2.9. Computer Code for Potential Problems using Quadratic Elements (POQUABE)

C
C ASSIGN NUMBERS FOR INPUT AND OUTPUT FILES
C

INP=5
IPR=6
C
C READ NAMES AND OPEN FILES FOR INPUT AND OUTPUT
C
WRITE(*,' (A) ') ' NAME OF INPUT FILE (MAX. 10 CHART.)'
READ(*,' (A) ')FILEIN
OPEN(INP,FILE=FILEIN,STATUS="OLD’)
WRITE(¥,' (A) ') ’ NAME OF OUTPUT FILE (MAX. 10 CHART.)’
READ(*,' (A) ')FILEOUT
OPEN(IPR,FILE=FILEOUT, STATUS="NEW')
C
C READ DATA
c
CALL INPUTPQ(CX,CY,X,Y,KODE,DFI)
Cc
C COMPUTE H AND G MATRICES AND FORM SYSTEM (A X = F)
[
CALL GHMATPQ(X,Y,G,H,FI,DFI,KODE,NX,NX1)
[+
C SOLVE SYSTEM OF EQUATIONS
c
CALL SLNPD(H,FI,D,N,NX)
[+
C COMPUTE POTENTIAL VALUES AT INTERNAL POINTS
c
CALL INTERPQ(F1,DFI,KODE,CX,CY,X,Y,POT,FLUX1,FLUX2)
c
C  PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS
c
CALL OUTPTPQ(X,Y,FI,DFI,CX,CY,POT,FLUX1,FLUX2)
c
(¢ CLOSE INPUT AND OUTPUT FILES
c
CLOSE (INP)
CLOSE (IPR)
STOP
END

Routine INPUTPQ

95

This subroutine reads all the input required by the program and requests a file

from the user containing the following lines:

(i) Title Line Contains the title of the problem

(ii) Basic Parameter Line Contains the number of elements and the number of

internal points.

(iii)

(iv)

Boundary Nodes Coordinates Lines Contains x, x, coordinates read counter-
clockwise for external boundaries and clockwise for internal ones. The lines
are organized in free format.

Boundary Conditions Lines As many lines as boundary elements. Three
values of KODE and the known variables are read for each element,
corresponding to the three nodes. In this way a value of the flux may be
prescribed for an extreme node as part of one element and a different value
as part of the other element. The potential however must be unique for any
node and the flux must also be unique for the mid-node of any element.
The known variables are the potential if KODE =0 and the flux if
KODE = 1. The order of reading is first KODE(I) and then value of the
variable (I) for I =1, 2, 3.



96 Chapter 2 Potential Problems

(v) Internal Points Coordinates Lines Contain x,x, coordinates of the internal
points organized in free format. There will be one or more lines if necessary.

This subroutine first prints the name of the run and the basic parameters. Then
the coordinates of the nodes and the boundary conditions for each element, with
codes and prescribed values are printed. The internal points coordinates are only
printed in the subroutine OUTPTPQ.

The FORTRAN listing of INPUTPQ is as follows:

SUBROUTINE INPUTPQ(CX,CY,X,Y,KODE,DFI)
PROGRAM 17
NE= NUMBER OF BOUNDARY ELEMENTS

N = NUMBER OF BOUNDARY NODES = 2 % NE
L = NUMBER OF INTERNAL POINTS

a0 O

CHARACTER#80 TITLE
COMMON N,L,INP,IPR
DIMENSION KODE(1),X{1),¥Y(1},CX(1),CY(3),DFI(1)
WRITE(IPR,100)
100 FORMAT(' ',79('%'))

READ JOB TITLE

[eXeRe]

READ(INP,'(A)') TITLE
WRITE(IPR,’(A}') TITLE

READ NUMBER OF BOUNDARY ELEMENTS AND INTERNAL POINTS

aaco

READ(INP,*)NE,L
WRITE(IPR,210}NE,L
210 FORMAT(//2X,'DATA'/2X,'NUMBER OF BOUNDARY ELEMENTS=’,
113/2X, 'NUMBER OF INTERNAL POINTS=',13)
N=2%NE

READ BOUNDARY NODES COORDINATES IN ARRAYS X AND Y

ann

WRITE(IPR,500)
READ(INP,*) (X{(I)},Y¥(I),I=1,N)
DO 10 I=1,N
10 WRITE(IPR,240) I,X(X),Y(I)
500 FORMAT(//2X,'BOUNDARY NODES COORDINATES'///4X,
1°NODE',10X,'X’,18X,'Y"'/)
240 FORMAT(5X,I13,2(5X,E14.7})

READ BOUNDARY CONDITIONS IN DFI(I) VECTOR,IF KODE(I)=0
THE DFI(1) VALUE IS A KNOWN POTENTIAL; IF KODE(I)=1 THE
DFI(1) VALUE IS A KNOWN POTENTIAL DERIVATIVE (FLUX).
THREE BOUNDARY CONDITIONS ARE READ PER ELEMENT.

NODES BETWEEN TWO ELEMENTS MAY HAVE TWO DIFFERENT VALUES
OF THE POTENTIAL DERIVATIVE BUT ONLY ONE VALUE OF THE
POTENTIAL.

(e X2 EsEvRoReNoNoRe]

WRITE(IPR,800)

800 FORMAT(//2X,'BOUNDARY CONDITIONS'//11X, .
1t e FIRST NODE------ 443X, e SECOND NODE----- 'y 3X,
2w THIRD NODE--=-~-- '/13X, "PRESCRIBED’, 14X,
3'PRESCRIBED',14X, 'PRESCRIBED'/1X, 'ELEMENT' ,8X, 'VALUE',
47X, 'CODE* ,8X, 'VALUE',7X, *CODE’,8X, 'VALUE',7X, 'CODE' }
DO 20 I=1,NE
READ{INP,*) (KODE(3*1-3+J),DFI(3%I-3+J),J=1,3)

20 WRITE(IPR,950)I,(DFI(3%1-3+4J),KODE(3%*I-3+J),J=1,3)

950 FORMAT(3X,13,2X,3(4X,E14.7,5X,11)})

READ COORDINATES OF THE INTERNAL POINTS

ano

IF(L.EQ.0) GO TO 30

READ(INP,*} (CX(I),CY(I),I=1,L)
30 RETURN

END
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Routine GHMATPQ

This subroutine computes the G and H system matrices by calling routines
EXTINPQ and LOCINPQ.

EXTINPQ: Computes the GW and HW (3) submatrices which relate a
collocation point with an element as defined by its three nodes.
The collocation point is not any one of the element nodes.

LOCINPQ: Computes the GW (3) submatrix for the case when the collocation
point is one of the nodes within the element under consideration
(i.e. the singularity is in the same element). Notice that the corre-
sponding HW (3) is computed using EXTINPQ because the
singularity will occur only on the diagonal term and this is
computed later on by adding the off-diagonal terms of the row.

The resulting GW and HW submatrices are assembled in the G and H system
matrices. Matrix G is now rectangular since each extreme node of an element may
have different fluxes, i.c. one ‘before’ and another ‘after’ the node. The diagonal
terms in H are computed using constant potential considerations, which results
in adding row coefficients together.

Once the matrices H and G are assembled, the system of equations needs to
be reordered in accordance with the boundary conditions to form

AX =F

where X is a (N) vector of unknowns, N being the number of nodes; A is a (N x N)
matrix whose columns are a combination of columns of H or G depending on
the boundary conditions or of two consecutive columns of G when the unknown is
the unique value of the tractions at both sides of the extreme node of an element;
F is a known vector computed by multiplying the prescribed boundary conditions
by the corresponding row terms of G or H.

At the end of the subroutine GHMATPQ and after rearranging H contains
the matrix A, and FI the F vector.

The FORTRAN listing of GHMATPQ is as follows.

SUBROUTINE GHMATPQ(X,Y,G,H,FI,DFI,KODE,NX,NX1)
PROGRAM 18
THIS SUBROUTINE COMPUTES THE G AND H MATRICES AND FORMS

THE SYSTEM OF EQUATIONS A X = F
H IS A SQUARE MATRIX (2*NE,2%NE); G IS RECTANGULAR (2*NE,3*NE)

aaaO00n6 O

DIMENSION X(1),Y(1),G(NX,NX1),B(NX,NX)

DIMENSION HW(3),GW(3),DQIW(3),DQ2W(3),DUIW(3),DU2W(3)
DIMENSION FI(1),DFI{1),KODE(1)

COMMON N, L, INP,IPR

NE=N/2

DO 20 I=1,N

DO 11 J=1,N

H(1,J)}=0.

DO 12 J=1,3*NE

1

-
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aaaa

aaa

a0a

aona

oaaaa

C
c
C

12 6(I1,J)=0.

20 CONTINUE
X(N+1)=X(1)
Y(N+1)=Y(1)

COMPUTE THE GW AND HW MATRICES FOR EACH COLLOCATION
POINT AND EACH BOUNDARY ELEMENT

DO 40 LL=1,N
DO 40 1=1,N-1,2
IF((LL-1)*(LL-1~1)*{LL-1-2)*{LL-14N-2}) 22,21,22
21 NODO=LL-I+1
IF((LL.EQ.1).,AND.(X.EQ.N~1}} NODO=NODO+N
CALL EXTINPQ(X(LL),Y(LL),X(I1},Y{X),X{(I41),Y(I+1),X{1+2),Y{1+2)
*,HW,GW,DQ1W,DQ2W,DU1W,DU2W,0)
CALL LOCINPQ(X(I),Y(I),X(XI+1),Y(I41),X(I1+2),Y(3I42),GW,NODO)
GO TO 34
22 CALL EXTINPQ(X{LL),Y(LL),X(I),Y(I),X(T+1),Y(T+1),X(J42),Y(I+2)
*,HW,GW,DQIW,DQ2W,DU1W,DU2W,0)

PLUG THE GW AND HW MATRICES INTO THE GENERAL G AND H MATRICES.

34 DO 38 J=1,3
K=3%(1-1)/2
G(LL,K+J)=G(LL,K+J)+GW(J)
IF(I-N+1) 37,35,37

35 IF(J-3) 37,36,36

36 H(LL,1)=B(LL,1)+H%(J)
GO TO 38

37 H(LL,I~1+J)=H(LL,I~1+J)+HW(J)

38 CONTINUE

40 CONTINUE

COMPUTE THE DIAGONAL COEFFICIENTS OF THE H MATRIX

DO 70 I=1,N

H(I,I)=0.

DO 60 J=1,N

IF(I.EQ.J) GO TO 60

H(I,3)=H(X,X)-B(I,J)
60 CONTINUE

ADD ONE TO THE DJAGONAL COEFFICIENTS FOR
EXTERNAL PROPLEMS.

IF(H(1,1)) 65,70,70
65 H(I,I)=6,2831852+H(1,1)
70 CONTINUE

REORDER THE COLUMNS OF THE SYSTEM OF EQUATIONS IN ACCORDANCE
WITH THE BOUNDARY CONDITIONS AND FORM SYSTEM MATRIX A WHICH
IS STORED IN H

DO 180 I=1,NE
PO 170 J=1,3
IF(EODE(3%1-3+4J)) 110,110,170
116 IF((I~NE).NE,0 ,OR. J.NE.3) GO TO 125
IF(RODE(1)) 115,115,113
113 DO 114 K=1,N
CH=H(K,1)
H{K,1)=-G(K,3%1)
114 G(K,3%I)=~CH
GO TO 170
115 DO 116 K=1,N
H{K,1)=H(K,1)-G(K,3*I)
116 G(K,3*I)=0.
GO TO 170
125 IF(I1.EQ.1 .OR. J.GT.1 .OR. KODE(3*1-3).EQ.1l) GO TO 130
DO 129 K=1,N
H(K,2%¥I-1)=H(K,2%I-1)-G(K,3*I-2)
129 G(K,3%1-2)=0,
60 TO 170
130 DO 132 K=1,N
CH=H(K,2%I-2+J)
H(K,2%1-2+J)=~G(K,3%I-34J)
132 G(K,3%I-3+J)=-CH
170 CONTINVE
180 CONTINUE

FORM THE RIGHT BAND SIDE VECTOR F WHICH IS STORED IN FI

DO 190 I=1,N
FI(I)= 0.
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DO 185 J=1,3*NE
185 FI(I)=FI(I)+G(I,J)*DFI(J)
190 CONTINUE

RETURN

END

Routine EXTINPQ
This subroutine computes using numerical integration, the (3) submatrices GW
and HW that correspond to an element when the collocation point is at a node

other than any of those 3 in the element. The correlation of the collocation points
are XP and YP. The integrals are of the type (2.76), i.e.

+1
HW = [ ¢q* dl' = | ¢q¥|G|d¢ (2.87)
r; -1
GW = | ¢u*dl' = +j"1 $u*|G| d¢ (2.88)
I, —1

This subroutine also computes the (3) submatrices DUIW, DU2W, DQ1W and
DQ2W which are needed to obtain the x, and x, fluxes at internal points

our\'

l"j 1

DU2W = j [} <zl*>' ar (2.90)
r; X2

DQ1W = J' ¢<%)l dr (2.91)
Fj 1

DQ2W = j ¢<gi—*>' dar (2.92)
l"j 2

The Jacobians are calculated by taking derivatives of the expressions for the x;
and x, coordinates, which are defined as follows (equation (2.80)),
Xy =¢x] + doxi + d3xi

. 5 s (2.93)
Xy = 1X; + Px3 + P3x3

After substituting the ¢, expression (equation (2.74)) the above relationships can
be written as,

i

(2.94)

xy =3E3(x1 — 2x7 + x3) + 3€(x] — x1) + x}
1
2

2= 38%(x3 — 2x3 + x3) + 3(x — x3) + x3

=
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The Jacobian is obtained by substituting (2.94) into (2.78) which gives

|G] = [{(x} — 2¢} + xD)E + 303 — x])}?
+{(x3 = 2x3 + x3)E + 5x3 — x3)*}?]"° (2.95)

A Gauss quadrature formula with ten points has been taken instead of the
four points formula applied in the constant and linear element cases. The reason
is twofold: (i) The variation of potential and flux is quadratic and hence more
points should be taken and (ii) the element geometry is also quadratic.

Commmmmmnce e oo —— _— e m e —————————
SUBROUTINE EXTINPQ(XP,YP,X1,Y1,X2,Y2,X3,Y3,HW,GW
1,DQ1W,DQ2W,DUIW,DU2W,K)

PROGRAM 19

TH1S SUBRUOTINE COMPUTES THE HW AND GW MATRICES

WHICH RELATE A NODE (XP,YP) WITH A BOUNDARY

ELEMENT USING GAUSS QUADRATURE

IT ALSO COMPUTES (WHEN K=1) THE DQIW, DQ2W, DUIW AND DU2W MATRICES
WHICH RELATE AN INTERNAL POINT WITH A BOUNDARY ELEMENT AND ARE
NEEDED FOR COMPUTATION OF THE INTERNAL FLUX VALUES

RA = RADIUS

RD1,RD2,RDN = RADIUS DERIVATIVES

ETAl,ETA2 = COMPONENTS OF THE UNIT NORMAL TO THE ELEMENT
XCO,YCo = INTEGRATION POINT ALONG THE ELEMENT

XJA = JACOBIAN

aaaoaaooaoaaaaoaaoNn

COMMON N, L, INP,IPR

DIMENSION F(3),GW(3),HW(3),DQIW(3),DQ2W(3),DPUIW(3),DU2W(3)

DIMENSION GI(10),0ME(10)

DATA GI/0.9739065285,-0.9739065285,0.8650633666,-0,8650633666
@,0.6794095683,-0.6794095682,0.4333953941,-0.4333953941,
@0.1488743389,~0.1488743389/

DATA OME/0.0666713443,0,0666713443,0.1494513491,0.1494513491
9,0.2190863625,0,2190863625,0.2692667193,0.2692667193,
€0.2955242247,0.2955242247/

DO 10 J=1,3

AW (J)=0.

GW(J)=0,

DQIW(J)=0,

DQ2W(J)=0.

DUIW(J)=0,

10 DU2W(J)=0,

A=X3-2%X2+X1

B=(X3-X1)/2

C=Y3-2%Y2+Y1

D=(Y3-Y1)/2

DO 40 I=1,10

COMPUTE THE VALUES OF THE SHAPE FUNCTIONS AT THE
INTEGRATION POINTS

[eReReNel

F(1)=GI(I)*{(GI(I)~1)*0.5
F(2)=1.-GI(I)*%2
F(3)=GI(I)*(GI(I)+1)%0.5

COMPUTE GEOMETRICAL PROPERTIES AT THE INTEGRATION POINTS

oaa

XCO=X1*F(1)+X2%F(2)+X3*F(3)
YCO=Y1*F(1)+Y2*F(2)+Y3*F(3)
XJA=SQRT((GI(I)*A+B)**2+(GI(I)*C+D)**2)
ETA1=(GI(1)*C+D)/XJA
ETA2=-(GI(1)*A+B}/XJA

RA=SQRT ( (XP-XCO)}**2+(YP-YCO)**2)
RD1=(XCO-XP)/RA

RD2=(YCO-YP)/RA

RDN=RD1*ETA1+RD2*ETA2
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COMPUTE GW, HW DQ1W, DQZW, DUIW AND DU2W MATRICES

[eNeXe]

DO 40 J=1,3
IF(K) 30,30,20

20 DUIW(J)=DUIW(J)+RD1%OME(I)*XJA*F(J)/RA
DU2W(J)=DU2W(J)+RD2%OME(1)*XJA*F(J)/RA
DQIW(J)=DQIW(J)-((2.%RD1*%2-1,)*ETA1+2,%RD14RD2*ETA2) *
JOME(I)*XJA®F(J)/RA*%2
DQ2W(J)=DQ2W(J)-((2.%RD2%#2-1, )*ETA2+2.*RD1¥RD2*ETAl) *
1OME(1)*XJASF(J3)/RA**2

30 GW(J)=GW(J)+ALOG(1./RA)*OME(I}*XJA*F(J)

40 HW(J)=HW(J)-RDN/RA*OME(1)*XJA%F(J)
RETURN
END

Routine LOCINPQ

This subroutine computes using numerical integration, the submatrix GW that
corresponds to an element when the collocation point is one of those three in the
element. The integrals are

GW = f ¢u* dI' (2.96)
r;

Three cases are considered depending on the position of the collocation point,
i.e. NODE =1, 2 or 3 (see figure 2.16).

(1) Collocation point at Node (1)

First a change of coordinates from x,x, to £ is defined in the same way that was
done in subroutine EXTINPQ. Then, in order to integrate the singularity a new
change of variables is carried out, i.e.

1
n= 5% 2.97)

The integral then gives two parts, one with a singular term In 1/ and the other
with no singularity. The first part is integrated by means of a special integration
formula of the type (see Appendix A)

1 1 n
I= g ln(;)f(n) dn = Zl w: f(n;) (2.98)

(in the program #; = GIL(I), w, = OMEL(l)). The second part is integrated by
the standard Gauss quadrature formula in terms of the variable £ (in the program
&= GI(I), w;= OME(I)). The shape functions ¢,, ¢,, ¢ are given by FI1, F2,
F3 in terms of £ and by FL1, FL2, FL3 in terms of #.

XJAT1 is the Jacobian for the special integration and XJA?2 is the Jacobian for
the standard Gauss quadrature.
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(i1) Collocation point at Node (2)

In order to integrate the two singularities that appear at both sides of the nodes,
the integral is divided into two parts,

3) @) 3
GW= | ¢u*|G| dé= | ¢u*\G| dé+ | ¢u*]G| d¢ 2.99)
) ) @

Then, the first part is changed to the variable (see figure 2.16) 5" = —¢ and the
second part ot the variable # = £. Now each singular part of these two integrals
is computed using the special integration formula, and the two non-singular parts

together are integrated using standard 10 points Gauss quadrature.
In the program XJA1l and XJAIll are the Jacobians for the two special
logarthmic integrations and XJA2 is the Jacobian for the standard Gauss

quadrature. The functions ¢,, ¢, and ¢, in terms of the new variables n are FLN1,
FLN2 and FLN3.

(i) Collocation point at Node (3)

This case is similar to the first one with the logarithmic integration variable being
now

. _1-¢ (2.100)

g==1 =1 =1
n=0 n'=1 n=1

Collocation Point Collocation Point Collocation Point
is at 1 is at 2 is at 3

Figure 2.16 Geometrical coordinates systems for numerical integration

SUBROUTINE LOCINPQ(XG1,YG1,XG2,Y¥G2,XG3,YG3,GW,NODO)
PROGRAM 20
THIS SUBROUTINE COMPUTES THE GW MATRIX WHEN THE COLLOCATION

POINT IS ONE OF THE NODES OF THE INTEGRATION ELEMENT.
THE COEFFICIENTS ARE COMPUTED BY NUMERICAL INTEGRATION:

acQaqaoaaaoa Q
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(e ReXpi

nan

aaan

[eXeNe]

aQ

aan

THE NON SINGULAR PART IS COMPUTED USING STANDARD GAUSS QUADRATURE,
THE LOGARITHMIC PART IS COMPUTED USING A SPECIAL QUADRATURE FORMULA.

COMMON N, L, INP, IPR
DIMENSION GI(10),0ME(10),GIL(10),0MEL(10),GW(3)

DATA FOR THE GAUSS QUADRATURE

DATA GI/0.9739065285,-0.9739065285,0.8650633666,~-0.8650633666
@,0.6794095682,-0.6794095682,0.4333953941,-0.4333953941,
€0.1488743389,-0.1488743389/

DATA OME/0.0666713443,0.0666713443,0.1494513491,0.1494513491
@,0.2190863625,0.2190863625,0.2692667193,0.2692667193,
€0.2955242247,0.2955242247/

DATA FOR THE SPECIAL QUADRATURE

DATA GIL/0.0090426309,0.0539712662,0.1353118246,0.2470524162
€,0.3802125396,0.5237923179,0.66577520565,0.7941904160,
€0.8981610912,0.9688479887/

DATA OMEL/0.1209551319,0.1863635425,0.1956608732,0.1735771421
€,0.1356956729,0.0936467585,0.0557877273,0.0271598109,
€0.0095151826,0.0016381576/

SET A LOCAL COORDINATES SYSTEM

G0 TO(1,2,3),NODO

1 X3=XG3-XG1
¥3=YG3-YG1
X2=XG2-XG1
¥Y2=YG2-YG1
Al=(X3-2%X2) *0.5
B1=X2
A2=(Y¥3-24Y2)*0.5
B2=Y2
GO TO 4

2 X3=XG3-XG2
¥3=YG3-¥YG2
X1=XG1-XG2
Y1=YG1-YG2
A1=X1+X3
Bl=X3~X1
A2=Y1+Y3
B2=Y3-Y1
GO TO 4

3 X2=XG2-XG3
Y2=YG2-YG3
X1=XG1-XG3
Y1=YG1-YG3
Al=(X1-2%X2) *0.5
Bl=-X2
A2=(Y1-2%Y2)*0.5
B2=-Y2

4 CONTINUE

DO 10 J=1,3
10 GW(J)=0.

DO 250 I=1,10
COMPUTE SHAPE FUNCTIONS FOR NUMERICAL INTEGRATIONS

F3=0.5%GI (I)*(GI(I)+1.)
F2=1.-GI (1) **2

F1=0.5*GI (I)*(GI(I)-1.)
FL3=GIL(I)*(2.*GIL(I)-1.)
FL2=4 ,*GIL(I)*(1.~GIL(I))
FL1=(GIL(I)-1.)*(2.*GIL(I)-1.)
FLN3=0.5%GIL(I)* (GIL(I)+1.)
FLN2=1.-GIL(I)**2
FLN1=0.5%GIL(I)*(GIL(I)-1.)
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COMPUTE GEOMETRICAL PROPERTIES

50

60

70

GO TO(50,60,70) NODO

XTA1=SQRT( (4 *A1*GIL(I) -2*A1+0.54X3) %2+ (4 *A2*GIL(I) ~2%A2+0,5%Y3) %%
e 2)%2

XJA2=SQRT ( (AL*GI (1) *2+0,5%X3) **2+ (A2*GI (I) *2+0.5%Y3) x*2)
XLO=~ALOG (2*SQRT { (GI (1) *A1+B1) *%2+ (GI (I) *A2+B2) ¥*2))
S3=FL3*XJA1*OMEL (1) +F3*XJA2*XLO*OME (I)

S2=FL2*XJA1*OMEL(I) +F2*XJA2*XLO*OME (1)
S1=FL1*XJA1*OMEL(I)+F1*XJA2#*XLO*OME (I)

GO TO 200

XJA1=SQRT( (0.5%B1-A1*GIL(I)) **2+ (0,5*%B2~A2*GIL(I)) **2)
XJAL11=SQRT( (0.5*B1+A1*GIL(I) ) *#2+ (0.5*B2+A2*GIL(I)) **2)
XTA2=SQRT ( (0.5*B1+A1*GI (I))**2+(0.5%B2+A2+GL (1)) **2)
XLO=-0.5%ALOG( (GI (I) *A1*0,5+B1%0.5) **2+ (GI (1) *A2%0.5+B2*%0.5) **2)
S3=(FLN1#*XJA1+FLN3*XJA11) *OMEL (I)+F3*XJA2#*XLO*OME (I)

S2=FLN2* (XJA1+XJA11) *OMEL (I) +F2*XJA2*XLO*OME (I)
S1=(FLN3*XJA1+FLN1*XJA11) *OMEL(I)+F1*XJA2*XLO*OME (I)

GO TO 200

XJTAL=SQRT{ (2*A1~4*A1*GIL(I)~0.5%X1) **2+ (2¥A2~4 *A2*GIL(I)-0.5%Y1) %
@2)*2

XJA2=SQRT ( (2*A1*GI (I)~0.5%X1) #*2+ (2*A2%GI (I)~0.54Y1) **2)
XLO=-ALOG (2*SQRT ( (A1*GI (I)+B1) *#2+ (A2*GI (I)+B2) **2))
$3=FLL*XJA1*OMEL (I)+F3*XJA2*XLO*OME (I)
$2=FL2*XJA1*OMEL (I} +F2*XJAZ*XLO*OME (I)

S1=FL3*XJA1*OMEL (I)+F1*XJA2*XLO*OME (I)

COMPUTE GW MATRIX

200 GW(3)= GW(3)+83

GW(2)= GW(2)+82
GW(1)= GW(1)+S1

250 CONTINUE

RETURN
END

"Routine INTERPQ

This subroutine first reorders the vectors DFI and FI in such a way that all the
boundary fluxes are stored in DFT and all the potentials in FIL. It then computes
the potentials and fluxes at internal points.

The potential at any interior point is given by

NE NE
W= Z {J‘ u*o dr}qf_ z {j q*é dr}uf (2.101)
Ir.

j=0 Fj j=1 ki

The fluxes are given by

o NE gu: i i NE 6—qa:)z } ;
@) = j=1 {r{ <8x1>¢ dr}q ,;1 {if (63‘1 ® dr qu

! (2.102)
(qu)i = Z {
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where the integrals along the boundary elements are computed numerically by
calling again the subroutine EXTINPQ.
The listing of INTERPQ is as follows:

C_—__ - -
SUBROUTINE INTERPQ(FI,DFI,KODE,CX,CY,X,Y,POT,FLUX],FLUX2)

C

C PROGRAM 21

c

C THIS SUBROUTINE COMPUTES THE VALUES OF THE POTENTIAL AND THE FLUXES

C AT INTERNAL POINTS.

c

le Xy Xe X

[eRoNoRe]

COMMON N, L, INP,IPR

DIMENSION FI(1),DFI(1),KODE(1),CX(1),CY(1)

DIMENSION X(1),Y(1),POT(1),FLUX1(1),FLUX2(1)
DIMENSION HW(3),GW(3),DQIW(3),DQ2W(3),DUIW(3),DU2W(3)

REARRANGE THE FI AND DF] ARRAYS TO STORE ALL THE VALUES OF THE
POTENTIAL IN F1 AND ALL THE VALUES OF THE DERIVATIVE IN DFI

130

170
180

NE=N/2

DO 180 I=1,NE

DO 170 J=1,3

IF(KODE(3%1~3+J)) 110,110,170
IF((I-NE).NE.O .OR. J.NE.3) GO TO 125
IF(KODE(1)) 114,114,113

CH=FI(1)

FI(1)=DFI(3%1)

DFI(3*%1)=CH

GO TO 170

DFI(3%1)=DFI(1)

GO TO 170

IF(I,EQ.1 .OR. J.GT.l .OR. KODE(3*1-3).EQ.1}) GO TO 130
DFI1(3%1-2)=DFI(3%*1-3)

GO TO 170

CH=FI(2%1~-2+J)
F1(2%I-2+4J)=DFI(3*I-3+J)
DFI(3%1-34J)=CH

CONTINUVE

CONTINVE

COMPUTE THE VALUES OF THE POTENTIAL AND THE FLUXES AT
INTERNAL POINTS

IF(L.EQ.0) GO TO 50
DO 240 K=1,L

POT(K)=0.

FLUX1(K)=0.

FLUX2(K)=0,

pO 230 I=1,NE

CALL EXTINPQ(CX(K),CY(K),X(2%I-1),Y(2%I~1),X(2%1),Y(2%1),X(2%I+1)
1,Y(2%1+1),HW,GW,DQ1W,DQ2W,DUIW,DU2W,1)

DO 220 J=1,3

1J2=2%1-24J

IF(1J2.GT.(2*NE)) 1J2=J-2
POT(K)=POT(K)+GW(J)*DFI(3%1-3+J)~HW(J)*FI(1J2)
FLUX1(K)=FLUX1(K)+DUIW(J)*DFI(3%1-3+J)-DQIW(J)*FI(1J2)

220 FLUX2(K)=FLUX2(K)+DU2W(J)*DFI(3*1-3+J)-DQ2W(J)*FI(1J2)
230 CONTINUE

POT(K)=POT(K)/(2.%3,.1415926536)
FLUX1(K)=FLUX1(K)/(2.%3.1415926536)
FLUX2(K)=FLUX2(K)/(2.%3.1415926536)

240 CONTINUE
50 RETURN

END

Routine OUTPTPQ

This subroutine prints the results in th following order.

(i

) Potentials and fluxes at boundary nodes (fluxes ‘before’ and ‘after’ each
node are printed. Mid-nodes always have the same flux at both sides).

(ii) Internal points potentials.
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The listing is as follows:

fo} —_—
SUBROUTINE OUTPTPQ(X,Y,FI,DFI,CX,CY,POT,FLUX1,FLUX2)
(o
C PROGRAM 22
C
C THIS SUBROUTINE PRINTS THE VALUES OF THE POTENTIAL AND ITS NORMAL
C DERIVATIVE AT BOUNDARY NODES. IT ALSO PRINTS THE VALUES OF THE
C POTENTIAL AT INTERNAL POINTS
C
COMMON N,L,INP,IPR
DIMENSION X(1),Y(1),FI(1),DFI(1),CX(1),CY(1)
DIMENSION POT(1),FLUX1(1),FLUX2(1)
[

NE=N/2
WRITE(IPR,100)
100 FORMAT{' ',79('%')//2X, RESULTS'//2X,'BOUNDARY NODES’//
156X, POTENTIAL DERIVATIVE'/
29X,’X',15%,'Y’, 12X, 'POTENTIAL' ,6X, 'BEFORE NODE’,6X,'AFTER NODE'/)
WRITE(IPR,200) X(1),Y¥(1),FI(1),DFI(3*NE),DFI(1)
WRITE(IPR,200) X{(2),Y(2),FI(2),DF1(2),DFI(2)
DO 10 I=2,NE
WRITE(IPR,200) X(2%I-1),Y(2%I-1),FI(2*%1-1),DFI(3%1-3),DFI(3%I-2)
10 WRITE(IPR,200) X(2%I),Y(2%)),FI(2%1),DFI(3*I1-1),DFI(3*I-1)
200 FORMAT(5(2X,E14.5))

IF{L.EQ.0) GO TO 30
WRITE(IPR,300)

300 FORMAT(//,2X,'INTERNAL POINTS',//9X,’'X',15X,’'Y’,12X, POTENTIAL',
19X, 'FLUX X’,10X, 'FLUX Y'/)
DO 20 K=1,L

20 WRITE{IPR,400)CX(K),CY(K),POT(K),FLUX1(K),FLUX2(K)

400 FORMAT(5(2X,El4.5))

30 WRITE(IPR,500)

500 FORMAT(' ',79(’'%’))
RETURN
END

Example 2.4

The problem of an elliptical bar under torsion (figure 2.17(a)) is analysed using
program POQUABE. Under Saint-Venant type torsion the displacements are
given by

U, = —0x3x,
up = 0x3x, (a)
ug=0¢

where 8 is the torsion angle per unit length and ¢(x, y) is the warping function
given by

Vip=0 (b)

The boundary conditions are as follows.
Tractions normal to the boundary are identically zero, hence

% = |r| cos(#, ©) ()
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For the case of an ellipse this becomes,

0 a® — b?
¢ = X1 X3 (d)

on  Ja*xZ+b*x3

The dimensions were assumed to be a =10 and b =5 and values of ¢ on the
boundary and at two selected internal points (x; = 2, x, =2) and (x; =4, x, = 3.5)
were computed.

Because of symmetry ¢ = 0 along the two axes. Thus, only one quarter of the
ellipse needs to be discretized. Ten quadratic elements were used here. Two for
the short semi-axis, four for the long one and four for one quarter of the ellipse
(see figure 2.17(b)).

The data for this case are as follows:

ELLIPTICAL SECTION (10) (DATA)

ELLIPTICAL SECTION UNDER TORSION (10 QUADRATIC ELEMENTS)

10 2

0. 0. 1.25 0. 2.5 0. 3.75 0. 5. 0. 6.25 0. 7.5 0, 8.75 0. 10. O.
9.67 1.273 8.814 2.3617 7.7008 3.1898 6.174 3.933

4.7898 4.,3891 3.3044 4.719 1.557 4.939

0. 5. 0. 3.375 0. 2.5 0. 1.25

0 0. 0 0. 0O,

0 0. 00. 00O,
0 0. 00. 00O0.
00. 00. 00

1 0. 1-3.379 1 -4.8334

1 ~-4.8334 1 -4.9447 1 -4.3104
1 -4.3104 1 -3.4657 1 -2.4411
1 -2.4411 1 ~1.1643 1 0.

0 0. 00. 0O,
00. 00

2. 2. 4.

. 0 0.
3.5

and the output is given by

ELLIPTICAL SECTION (10) (OUTPUT)

FEXXXREREERERRERABREREARAENR AN IRRAARSANERERE SR TR FRERRFRARRRRRENREXREERNRSENRRER
ELLIPTICAL SECTION UNDER TORSION (10 QUADRATIC ELEMENTS)

DATA
NUMBER OF BOUNDARY ELEMENTS= 10
NUMBER OF INTERNAL POINTS= 2

BOUNDARY NODES COORDINATES

NODE X Y
1 .0000000E+00 .0000000E+00
2 +1250000E+01 .0000000E+00
3 +2500000E+01 .0000000E+00
4 .3750000E+01 +0000000E+00
5 +.5000000E+01 .0000000E+00
6 .6250000E+01 +0000000E+00
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7 +7500000E+01
8 +8750000E+01
9 +1000000E+02
10 +9670000E+01
11 +8814000E+01
12 +7700800E+01
13 +6174000E+01
14 +4789800E+01
15 +3304400E+01
16 +1557000E+01
17 «0000000E+00
18 +0000000E+00
19 +0000000E+00
20 +0000000E+00

BOUNDARY CONDITIONS

+0000000E+00
+0000000E+00
+0000000E+00
+1273000E+01
«2361700E+01
«3189800E+01
+3933000E+01
+4389100E+01
«4719000E+01
+4939000E+01
+5000000E+01
+3375000E+01
+2500000E+01
+1250000E+01

~=~=~=FIRST NODE--~-=~  ===+~SECOND NOPE-=~-=  =-=-= THIRD NODE--=-=~
PRESCRIBED PRESCRIBED PRESCRIBED
ELEMENT VALUE CODE VALUE CODE VALUE CODE
1 .0000000E+00 0 .0000000E+00 .0000000E+00 0
2 .0000000E+00 0 .0000000E+00 0 +0000000E+00 o
3 .0000000E+00 0 .0000000E+00 0 .0000000E+00 0
4 .0000000E+00 0 .0000000E+00 0 .0000000E+00 0
5 .0000000E+00 1 -.3379000E+01 1 ~.4833400E+01 1
6 ~.4833400E401 1 -.4944700E+01 1 -,4310400E+01 1
7 ~.4310400E+01 1 ~.3465700E+01 1 ~.2441100E+01 1
8 ~.2441100E+01 1 -.1164300E+01 1 .0000000E+00 3
9 .0000000E+00 0 .0000000E+00 0 ,0000000E+00 0
10 +0000000E+00 0 .0000000E+00 .0000000E+00 o
* XEEX L2 22 X222 3224332222823 23 2222222222
RESULTS
BOUNDARY NODES
POTENTIAL DERIVATIVE
X Y POTENTIAL BEFORE NODE AFTER NODE
.00000E+00 .00000E+00 .00000E+00 -.28405E-03 -.28405E-03
.12500E+01 ,0D0QOE+00 .00000E+00 . T4965E+00 .T4965E+00
.25000E+01 .00000E+00 .00000E+00 .14996E+01 L 14996E+03
.37500E+01 .00000E+00 .00D00E+00 .22502E+01 . 22502E+01
+50000E+01 .00000E+00 .00000E+00 +29999E+01 +29999E+01
,62500E+01 .00000E+00 .00000E+00 +37536E+01 .37536E+01
.75000E+01 .00000E+00 .00000E+00 <44914E+01 +44914E+01
.87500E+01 +0D000E+00 +0000DE+00 53030E+01 .53030E+01
. 10000E+02 .00000E+00 .00000E+00 .58638E+01 +00000E+00
.96700E+01 +12730E+01 ~.74619E+01 -.33790E+01 ~.33790E+01
.88140E+0} .23617E+01 ~.12506E+02 ~.48334E+01 ~.48334E+01
.7TO08E+01 .31898E+01 -, 14746E+02 ~.4944TE+01 -.49447E+01
+61T40E+01 .39330E+01 -.14576E+02 ~.43104E+01 -.43104E+01
.47898E+01 +43891E+01 -.12616E402 -.34657E+01 ~.34657E+01
+33044E+01 +4T190E+01 ~.93634E+01 ~.24411E+01 -.24411E+01
+15570E+01 .48390E+01 ~.46001E+01 ~.11643E+01 -.11643E+01
. 00000E+00 50000E+01 +00000E+00 .00000E+00 +30154E+01
.00000E+00 .33750E+01 +00000E+00 +20220E+01 .20220E+01
+00000E+00 +25000E+01 .00000E+00 +14999E+01 +14999E+01
00000E+00 .12500E+01 . 00000E+00 .T4936E+00 <T4936E+00
INTERNAL POINTS
b Y POTENTIAL FLUX X FLUX Y

.20000E+01 +20000E+01 ~.23980E401 ~.12001E+01 ~.11990E+01
.40000E+01 +35000E+0] ~.84019E+01 -.21012E+01 -.24031E+01

EXT 2223232332322 2 222222222213 SXEREX *REX

109

Results for some representative boundary nodes and the two internal points are
compared with the known exact solution in the following tabie.
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Potential using 10 Exact
Boundary node quadratic elements potential solution
= 8'814} ~12.506 12489
X, =2.361
=6.17
X1 =6.174 —14.576 ~14.570
Xy = 3.933
Xy =3.304 ~ 9.363 ~ 9.356
X, =4.719
Internal points
= 2'} ~ 2.399 — 2.400
Xy =2.
xi=4 } — 8.402 — 8.400
X,=3.5
Example 2.5

This example is the solution of the same elliptical sections as described in figure
2.16(a)) and studied in Example 2.4 but the number of quadratic elements has
been reduced to 5. It is interesting to see how the simple model gives results which
are in good agreement with the theory.

The input for the five element model (figure 2.17(c)) is as follows:

ELLIPTICAL SECTION (5) (DATA)

ELLIPTICAL SECTION UNDER TORSION (5 QUADRATIC ELEMENTS)

5 2
0. 0. 2.5 0. 5. 0. 7.5 0. 10. O.

8.814 2.3617
3.3044 4.719
. 0. 2.5

0. 00

6.174 3.933

-4.8334 1 -4.3104

1 -2.4411 1 0.
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The corresponding output is given below.

ELLIPTICAL SECTION (5) (OUTPUT)

BEXBRRRRAXRERRAREARKABERERRRAERAIEARERXBERXRRXRBRIRRAERABRRBEXNERSEERAXRLSLENRS
ELLIPTICAL SECTION UNDER TORSION (5 QUADRATIC ELEMENTS)

DATA
NUMBER OF BOUNDARY ELEMENTS= §
NUMBER OF INTERNAL POINTS= 2

BOUNDARY NODES COORDINATES

NODE X Y
1 .0000000E+00 .0000000E+00
2 «2500000E+01 .0000000E+00
3 +5000000E+01 +0000000E+00
4 .7500000E+01 .0000000E+00
5 .1000000E+02 .0000000E+00
6 .8814000E+01 .2361700E+01
7 +6174000E+01 +3933000E+01
8 «3304400E+01 «4719000E+01
9 .00000Q0E+00 +6000000E+01
10 .0000000E+00 +2500000E+0]

BOUNDARY CONDITIONS

----- FIRST NODE-----~ ~~--~-SECOND NODE----- -=~--~THIRD NODE------
PRESCRIBED PRESCRIBED PRESCRIBED

ELEMENT VALUE CODE VALUE CODE VALUE . CODE
1 +0000000E+00 0 +0000000E+00 [} .0000000E+00 0

2 +0000000E+00 0 +.0000000E+00 0 .0000000E+00 0

3 .0000000E+00 1 -.4833400E+01 1 ~.4310400E+01 1

4 -.4310400E+01 1 -,2441100E+01 1 . 0000000E+00 1

5 .0000000E+00 0 +0000000E+00 0 .0000000E+00 0
EXEREREEEKRREREARRRERRR KRN EREEEEEERXR AKX RESRAKXIEXEXABERBXRESERERRXKEARE B RKR K KRS

RESULTS

BOUNDARY NODES
POTENTIAL DERIVATIVE

X Y POTENTIAL BEFORE NODE AFTER NODE
.00000E+00 .00000E+00 .00000E+00 -.10388E-01 -.10388BE-01
+25000E+01 .00000E+00 +.00000E+0Q0 .15215E+01 .15215E+01
.50000E+01 .00000E+00 .00000E+00 29757E+01 +29757E+01
+75000E+01 .00000E+00 .00000E+00 +46612E+01 -46612E+01
+10000E+02 «00000E+00 .00000E+00 +.51625E401 .00000E+00
.88140E+01 «23617E+01 -.12779E+02 ~.48334E+01 ~.48334E+0]
«61740E+01 «39330E+01 -.14839E+02 ~.43104E+01 -.43104E+0]
.33044E+01 +47180E+01 -.94350E+01 ~.24411E+01 ~.24411E+01
«00000E+00 +§50000E+01 .00000E+00 .00000E+00 .30004E+01
«00000E+00 .25000E+01 +00000E+00 .16277E+01 «15277E+01

INTERNAL POINTS

X Yy POTENTIAL FLUX X FLUX Y
«20000E+01 .20000E+01 ~.24305E+01 -~.12130E+01 ~.12163E+01
+40000E+01 .35000E+01 ~.84718E+01 ~.21111E+01 ~.23590E+01

EEXREXXERAARAEXRRSEERRR * EXEERRERRRREREXEERRRXRERAAERERRKRKER
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The following table compares the 5 element solution with the exact solution.

Potential using § Exact

Boundary node quadratic elements potential solution
x, =8.814
¥ =881 } —12.779 —12.489
x, = 2.361
X, =6.174
o } —14.839 —14.570
X, =3.933
X1 =3.304 ~ 9435 ~ 9356
x,=4.719

. Internal points
= } — 2431 — 2.400
Xy =2.
¢, =4
o } — 8472 — 8.400
x,=3.5

As an exercise, the reader can run the same problem using programs
POCONBE and POLINBE for constant and linear elements and compare results
with those shown in the above table and in Example 2.4.

2.10 Computer Code for Multiboundary Problems (POMCOBE)

In engineering practice many problems have more than one surface as shown in
figure 2.18, with internal and external boundaries. Both types of boundary can be
differentiated by identifying the direction of the normals. This can easily be done
in two dimensional problems by adopting the rule that the numbering on the
external surface is done counterclockwise and the one on the internal surface is
carried out in the clockwise direction. From these rules the normal will be well
defined in the computer code.

The following computer code is based on the constant element code (POCONBE)
of section 4, but while the previous code was applicable to problems with only
one surface the following listing applies for multisurface cases.

Main Program

Similar to program 1 already described in POCONBE, but now the Common
statement is replaced by

COMMON N,L,NC(5),M,LEC,IMP
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(b) Set of tunnels
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(¢) Potential flow around several obstacles

Figure 2.18 Problems with more than one surface

where M defines the number of different surfaces and NC stores the last node of
each different surface. The dimensions of NC allow for 5 different surfaces in the
present listing but this can easily be extended by the user if required.
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The listing is as follows:

PROGRAM POMCOBE
PROGRAM 23

THIS PROGRAM SOLVES TWO DIMENSIONAL (PO)TENTIAL PROBLEMS
WITH (M)ULTIBOUNDARY POMAINS USING (CO}NSTANT (B)OUNDARY (E)LEMENTS

CHARACTER®*10 FILEIN,FILEOUT

a oot an aQa

DIMENSION X(101),¥(101),XM(100),YM(100),FI(100},DFI(100)
DIMENSION KODE(100),CX(20),CY(20),POT(20)},FLUX1{(20},FLUX2(20)

[e]

COMMON/MATG/ G(100,100)
COMMON/MATH/ H(100,100)
COMMON N,L,NC(5),M,INP,IPR

SET MAXIMUN DIMENSION OF THE SYSTEM OF EQUATIONS (NX)
(THIS NUMBER MUST BE EQUAL OR SMALLER THAN THE DIMENSION OF XM, ETC...)

NX=100
ASSIGN NUMBERS FOR INPUT AND OUTPUT FILES

aaa aaaa

INP=5
IPR=6

READ NAMES AND OPEN FILES FOR INPUT AND OUTPUT

aan

WRITE(*,’ (A) ’) ' NAME OF INPUT FILE (MAX. 10 CHART.)'’
READ(*,’ (A) ’)FILEIN
OPEN( INP,FILE=FILEIN,STATUS="OLD")
WRITE(*,’' (A) ') ' NAME OF OUTPUT FILE (MAX. 10 CHART.)'
READ(*,' (A) ')FILEOUT
OPEN{1PR,FILE=FILEOUT,STATUS="NEW')
READ DATA
CALL INPUMPC(CX,CY,X,Y,KODE,FI)
COMPUTE H AND G MATRICES AND FORM SYSTEM (A X = F)
CALL GHMAMPC(X,Y,XM,YM,G,H,FI,DFI,KODE,NX)
SOLVE SYSTEM OF EQUATIONS
CALL SLNPD(G,DFI,D,N,NX)
COMPUTE POTENTIAL VALUES AT INTERNAL POINTS
CALL INTEMPC(F1,DFI,KODE,CX,CY,X,Y,POT,FLUX1,FLUX2)
PRINT RESULTS AT BOUNDARY NODES AND INTERNAL POINTS
CALL OUTPMPC(XM,YM,F1,DFI,CX,CY,POT,FLUX1,FLUX2)

CLOSE INPUT AND OUTPUT FILES

o000 Q000 o000 000 aaoa aoon

CLOSE (INP)
CLOSE (IPR)
STOP
END



2.10. Computer Code for Multiboundary Problems (POMCOBE) 115
Routine INPUMPC

The input required is the same as in Program 2 of POCONBE with the exception
of M and NC which are read in the same line as N and L (i.e. number of elements
and number of internal points where the function u is required).

The listing is as follows:

SUBROUTINE INPUMPC(CX,CY,X,¥,KODE,FI)
c
C PROGRAM 24
c
CHARACTER*80 TITLE
COMMON N,L,NC(5),M,INP, IPR
DIMENSION CX(1),CY(1),X(1),¥(1),KODE(1),FI(1)

N= NUMBER OF BOUNDARY NODES (=NUMBER OF ELEMENTS)
NUMBER OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED

noon
5

WRITE (IPR,100)
100 FORMAT(’ /,79(’*’))

READ JOB TITLE

oo

READ (INP,’ (A)’) TITLE
WRITE (IPR, ’(A)’) TITLE

READ NUMBER OF BOUNDARY ELEMENTS,NUMBER OF INTERNAL POINTS,
NUMBER OF DIFFERENT BOUNDARIES AND LAST NODE OF EACH BOUNDARY

aaoan

READ (INP, *)N,L,M, (NC(K) ,K=1,M)
WRITE (IPR,300)N, L

300 FORMAT(//’ DATA’//2X,’NUMBER OF BOUNDARY ELEMENTS =‘,I3/2X,’NUMBER
1 OF INTERNAL POINTS WHERE THE FUNCTION IS CALCULATED =‘,I3)

IF(M)40,40,30

30 WRITE(IPR,999)M, (NC(K),K=1,M)

999 FORMAT(/2X, ‘NUMBER OF DIFFERENT BOUNDARIES =',I3/2X,
1¢LAST NODE OF EACH BOUNDARY =',5(I3,’,’))

READ COORDINATES OF EXTREME POINTS OF THE BOUNDARY ELEMENTS
IN ARRAYS X AND Y

[eXeNeReKe]

40 WRITE (IPR,500)

500 FORMAT(//2X,’COORDINATES OF THE EXTREME POINTS OF THE BOUNDARY ELE
1MENTS’,//1X, POINT’,7X, 'X’ ,15X,’Y’)
READ(INP,*) (X(I),¥(I),I=1,N)
Do 10 I=1,N

10 WRITE(IPR,700)I,X(I),¥(I)

700 FORMAT(2X,I3,2(2X,E14.5))

READ BOUNDARY CONDITIONS IN FI(I) VECTOR, IF KODE(I)=0 THE FI(I)
VALUE IS A KNOWN POTENTIAL;IF KODE(I)=1 THE FI(I) VALUE IS A
KNOWN POTENTIAL DERIVATIVE (FLUX).

oaonaan

WRITE (IPR, 800)
800 FORMAT(//2X, BOUNDARY CONDITIONS’//2X,’NODE’,6X,’CODE’,7X,’PRESCRI
1BED VALUE')
Do 20 I=1,N
READ (INP,*) KODE(I),FI(I)
20 WRITE(IPR,950)I,KODE(I),FI(I)
950 FORMAT(2X,I3,9X,I1,8X,E14.5)

READ COORDINATES OF THE INTERNAL POINTS

[eNrXe]

IF(L.EQ.0) GO TO 50

READ (INP, *) (CX(I),CY(I),I=1,L)
50 RETURN

END
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Routine GHMAMPC

In this routine the COMMON needs to be changed as in the MAIN program. In
addition some extra commands have been included to differentiate the points on
each of the surfaces. These are required in order to compute the mid-point
coordinates XM and YM. Each surface has to close and the last node of each
surface is in the mid-point between the last extreme point to the first point on
that surface.

The listing of GHMAMPC is now as follows.

c
SUBROUTINE GHMAMPC(X,Y,XM,¥YM,G,H,FI,DFI,KODE,NX)
c
C PROGRAM 25
c
C THIS SUBROUTINE COMPUTES THE G AND H MATRICES
C AND FORMS THE SYSTEM OF EQUATIONS A X = F
c
COMMON N,L,NC(5),M,INP,IPR
DIMENSION X(1),¥(1),XM(1),YM(1},FI(1),KODE(1)
DIMENSION DFI(1),G(NX,NX),H(NX,NX)
[
C COMPUTE THE NODAL COORDINATES AND STORE IN ARRAYS XM AND YM
c
X(N+1)=X(1)
Y(N+1)=Y(1)
DO 10 I=1,N
XM(I)={X(I)+X(X+1))/2
10 YM(X)=(Y(1)+Y(I+1))/2
IF(M-1)15,15,12
12 XM{NC(1))={X(NC{1))+X(1))/2
YM{NC(1))=(Y(NC(1))+Y(1))/2
DO 13 K=2,M
XM{NC(K) )=(X(NC(K))+X(NC(K-1)+1))}/2
13 YM{NC(K))=(Y(NC{K))+Y(NC{K-1)+1))/2
c
C COMPUTE THE COEFFICIENTS OF G AND H MATRICES
c
15 DO 30 I=1,N
po 30 J=1,N
IF(M-1)16,16,17
17 IF(J-NC(1))19,18,19
18 KK=1
GO TO 23
19 DO 22 K=2,M
IF(J-NC(K))22,21,22
21 KK=NC(K-1)+1
GO TO 23
22 CONTINUE
16 KK=J+1
23 IF(1-J)20,25,20
20 CALL EXTINPC{XM(I),YM(I),X(J),Y(J),X(KK),Y(KK),H(1,J),6(I,J)
1,DQ1,DQ2,DU1,DU2,0)
GO TO 30
25 CALL LOCINPC(X(J},Y(J),X(KK),Y(KK),G(1,J))
H(1,J)=3.1415926
30 CONTINUE
c
C REORDER THE COLUMNS OF THE SYSTEM OF EQUATIONS IN ACCORDANCE
C WITH THE BOUNDARY CONDITIONS AND FORM SYSTEM MATRIX A WHICH
C IS STORED IN G
c

PO 55 J=1,N
IF(KODE(J))}56,55,40
40 DO 50 I=1,N
CH=G(1,J)
G(I,J)=-H(X,J)
H(1,J)=-CH
50 CONTINUE

55 CONTINUE

aaa

FORM THE RIGHT HAND SIDE VECTOR F WHICH IS STORED IN DFI
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DO 60 I=},N

DFI(1)=0,

DO €0 JI=1,N

DFI(I)=DFI{I)+H(I,J)}*FI(J)
60 CONTINVE

RETURN

END

Routine EXTINPC

As in POCONBE (Program 4).

Routine LOCINPC

As in POCONBE (Program 5).

Routine SLNPD

As in POCONBE (Program 6).

Routine INTEMPC

This routine varies from Program 7 by a few statements to take into account the
different surfaces.

C~-

SUBROUTINE INTEMPC(FI,DFI,KODE,CX,CY,X,Y,POT,FLUX1,FLUX2)
c
C PROGRAM 26
c
C THIS SUBROUTINE COMPUTES THE VALUES OF THE POTENTIAL
C AND THE POTENTIAL DERIVATIVES (FLUXES) AT INTERNAL POINTS
¢

COMMON N,L,NC(5),M,INP,IPR

DIMENSION FI(1),DFI(1),KODE(1},CX(1),CY(1),X(1),¥Y(1)

DIMENSION POT{1),FLUX1(1),FLUX2(1)
c
C REARRANGE THE FI AND DFI ARRAYS TO STORE ALL THE VALUES OF THE
C POTENTIAL IN FI AND ALL THE VALUES OF THE DERIVATIVE IN DFI
c

DO 20 1=1,N

IF(XODE(1))} 20,20,10

10 CH=FI(1)
FI(1)=DFI(I)
DFI(1)=CH
20 CONTINUE

c
C COMPUTE THE POTENTIAL AND THE FLUXES AT INTERNAL POINTS
c

IF(L.EQ.0) GO TO 50

DO 40 K=1,L

POT(X)=0.

FLUX1(K)=0,

FLUX2(K)=0,

DO 30 J=1,N

IF(M-1)28,28,22
22 IF{(J~NC(1))24,23,24
23 KK=1

GO TO 29
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24 DO 26 LK=2,M
IF{J~NC(LK))26,25,26

25 KK=NC(LK-1)+1
GO TO 29

26 CONTINVE

28 KK=J+1

29 CALL EXTINPC(CX{(K),CY(K),X(J),Y(J),X(KK),Y(KK),A,B
1,0Q1,DQ2,DU1,DU2,1)
POT(K)=POT(K)+DFI(J)*B-FI(J)*A
FLUX1(K)=FLUX1(K)+DFI(J)*DU1-FI(J)*DQl

30 FLUXZ(X)=FLUX2(K)+DFI{J)*DU2-FI{(J)*DQ2
POT(K)=POT(K)/(2.%3.1416926)
FLUX1(K)= FLUX1(X)/(2.%3.1415926)

40 FLUX2(K)= FLUX2(K)/(2.%3,1415926)

50 RETURN
END

Routine OUTPMPC

Same as Program 8 but with the new COMMON.

Commm e e mm e e - ——
SUBROUTINE OUTPMPC(XM,YM,FI,DFI,CX,CY,POT,FLUX],FLUX2)

PROGRAM 27

THIS SUBROUTINE PRINTS THE VALUES OF THE POTENTIAL AND ITS NORMAL
DERIVATIVE AT BOUNDARY NODES. IT ALSO PRINTS THE VALUES OF THE
POTENTIAL AND THE FLUXES AT INTERNAL POINTS

anaaan

COMMON N,L,NC(5),M,INP,IPR
DIMENSION XM(1),YM(1),FI(1)},DFI(1),CX(1),C¥Y(1)
DIMENSION POT(1),FLUX1(1),FLUX2(1)

WRITE(IPR,100)
100 FORMAT(' ',79('*')//1X,’RESULTS’//2X, 'BOUNDARY NODES'//8BX,’X’,15
1X,°'Y’,13X, "POTENTIAL’, 3X, ' POTENTIAL DERIVATIVE'/)
DO 10 I=1,N
10 WRITE(IPR,200) XM{I),YM(I),FI(I),DFI(I)
200 FORMAT(4(2X,E14.5))

IF(L.EQ.0) GO TO 30
WRITE(IPR, 300)
300 FORMAT(//,2X,'INTERNAL POINTS',//8X,'X’,156X,'Y’',13X, POTENTIAL’,
19X, "FLUX X’,10X,'FLUX Y'/)
DO 20 X=1,L
20 WRITE(IPR,400)CX(K),CY(K),POT{K),FLUX1(K),FLUX2(K)
400 FORMAT(5(2X,E14.5))
30 WRITE(IPR,500)
500 FORMAT(' ',79('%’))
RETURN
END

2.11 Boundary Elements for Three Dimensional Problems

The elements used in three dimensional problems are surface elements which cover
the boundary of the body (figure 2.19). They are usually of two types; triangular
or quadrilateral and both can be flat or curved. The functions u and g and those
used to describe the geometry can be constant over the element, vary linearly,
being second order functions and others which produce a curved element. While
the development of constant or flat elements is comparatively simple, curved
elements are more important in three dimensions as they can follow better the
geometry of actual engineering components and hence they will be described in
detail here.
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HAIN ROL(LERXLEG
~ ROLLER END
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~ NUT END

Figure 2.19 Some three dimensional applications (lower figure by courtesy of
British Aerospace plc)

To study curved elements first we need to define the way in which we can pass
from the x,x,x; global cartesian system to the ¢,¢,, n system defined over the
element, where &, ¢, are oblique coordinates and # is in the direction of the normal
(see figure 2.20).
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Figure 2.20 a) Triangular curved elements for three dimensional problems

The transformation for a given function — say u - is related through the

following,

du
a¢,
du
3¢,
ou
6?-

0x,
3¢,
0x,
o,
0x,

|_on

0x, 0x5
o¢, 3¢,
0x, 0x4
%, 9,
Ox, 0x,

o on_|

Ju
0x,
ou
0x,
ou
05

(2.103)
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Figure 2.20 b) Quadrilateral curved elements for three dimenstonal problems

where the square matrix is the Jacobian or J. Hence

ou
a¢,
Ou
a2,
ou

on

a_u
ax,
ou
0x,
Ju
04

(2.104)
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The inverse relationship is then given by

Ju u
0x, 08,
1% G,
HN ] (2.105)
0x, d¢,
ou ou
O0x, an

Transformations of this type allow us to describe differentials of volume or
surface in the cartesian system in terms of the curvilinear coordinates. For instance
a differential of volume Q can be written as,

. oF OF OF
a0 = Magmtude(—r— x J_'l) de, dé, dn
0¢, 09&, an
=|J| ¢, d¢, dn (2.106)
A differential of area instead will be given by

oF  OF
— X —1dé; dE, = |Gl dé d .
5, X a¢, $dé, ‘ ' £, dg, (2.107)

where G is a reduced Jacobian and |G| is simply the magnitude of the normal
vector #; i.e.

ar =

. OF y oF — )_(5x1 0x, 6x3> 2.108)

T7oE, "eg, I oy o '
where

oF __(0)(1 0x, 6x3>_ oF _<6x1 0x, 6x3>

08, \0& 9L, 8¢)  o&, \0&; 08, 9%,

Notice that the values of g,, g, and g, are given by

gzz(i"g%_iﬁ%> (2.109)

<6x1 ox, 0x, 8x1>
9=\ 27 27 Az
Hence the magnitude of |G| is given by

G| =/(91 +95+93) (2.110)
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These relationships can be used to integrate any of the boundary integrals terms
such as,

fu*q dar or juq* dr 2.111)
r

r

which now become

JurqlGlde, ey [ ug¥|Glde, dz, 2.112)
¢

e

A whole range of quadrilateral and triangular elements can be defined. For

quadrilateral cases one prefers to use Lagrangian type of elements (i.e. the ones

which have in some cases nodes inside) as such elements give better numerical

" results when used with point collocation. This is simply because the collocation

points are better distributed in these cases. Table 2.1 shows some of the elements
which can be used.

2.12 Poisson’s Equation

Many practical applications are governed by the Poisson rather than Laplace
equations. In these cases sources are distributed in the Q domain in accordance
with a b(x) function. This produces the following governing equation

Viu=b in Q (2.113)

where b is a known function of position.

Sometimes the above equation can be reduced to Laplace’s simply by
substituting a particular solution or a change of variables. Care should be taken
in these cases also to transform the boundary conditions accordingly.

When the function b(x) has a more complex formulation it may be difficult to
find any suitable transformation and one needs to start with (2.113) plus the
appropriate boundary conditions in order to deduce the basic integral equation, i.e.

[ (V2u—bu*dQ= [ (g —qu*dl — | (u—i#)g*dl (2.114)
Q | P | 1
which integrated by parts twice produces,
J (V2u*)u dQ — | bu* dQ = — | qu* dl' — | qu*dl
Q Q ra r,

+ [ ug* dU + | ag* dr (2.115)
I r,
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After substituting the Laplace fundamental solution u* and grouping all boundary
terms together (i.e. in I' =T + I,), one obtains

c'u' + [ ug* dT + | bu* dQ = | qu* dT" (2.116)
r Q r

Notice that although the b functions are known and consequently the integrals
in Q do not introduce any new unknowns, the problem has changed in character
as we need now to carry out integrals in the domain as well as on the boundary.

Regions of integration called cells can now be employed to compute the domain
integral in (2.116) (figure 2.21). One usually applies a numerical integration
scheme such as Gauss. In this case for each position of the singularity at a boun-
dary point #, the integral in (2.116) can be written as,

Do [burda= Y <Z wk(bu*)k>Qe 2.117)
Q k=1

e=1

where e are the different cells (e varies from 1 to M, where M is the total number
of cells describing Q@ domain), w, are the integration weights, the function (bu*)
needs to be evaluated at r integration points on each cell, Q, is the area of the
cell ‘e’. D'is the result, different for each ‘i’ position of the fundamental solution,
where i is one of the boundary nodes.

Hence equation (2.116) now becomes

N N
cu'+ Y, AW +D'=) Gig (2.118)
ji=1 ji=1
or in matrix form
HU+D=GQ (2.119)

Notice that the domain integrals need to be computed as well when calculating
any values of potentials or fluxes at internal points. Hence,

N N
W=7y Gig— Y AW D (2.120)

i=1 j=1
where i is now an internal point, at which the singularity is applied.

Concentrated sources are very simple to handle in boundary elements. They
are a special case for which the function b at the internal point ‘" becomes,

b=QA 2.121)

where Q' is the magnitude of the source and A' is a Dirac delta function whose
integral is equal to 1 at the point [ and zero elsewhere. Assuming that a number
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of these functions exist one can write,
P
¢+ [ug* dl + [ bu* dQ+ Y, (Qu*)={ qu* dl (2.122)
r Q =1 r

u*! is the value of the fundamental solution at the point I. P are the number
of concentrated forces within the domain.

Another way of dealing with volume sources is to transform the domain integral
into equivalent boundary integrals. This is possible when the function b is harmonic
{although the approach can in principle be extended to harmonic, or bi-harmonic,
etc.). Harmonic means that b obeys the following equation,

Vi =0 (2.123)

To effect the transformation — which is basically an integration by parts — we need
to express the fundamental solution u* in function of some derivatives. This is
done by proposing a function v* such that,

u* = Vip* (2.124)

(Notice that the cells
are rather arbitrarily
defined)

x2

X1

Figure 2.21 Boundary clements and internal cells
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and then writing Green'’s identity, in the form

*
§ (V2% — 0*V2b) dQ = | (b %”7 —v* ?) dr (2.125)
Q r n

which if V2b =0 reduces to,

*
§ bu* dQ:j(b‘%—v* @) dr (2.126)
Q r

n on

Hence we have effectively reduced the domain integrals to two different boundary
integrals.

The function v* required in this case is simply the fundamental solution of the
biharmonic equation as,

V2y* = VZ(VZD*) = V** = — Al (2127)

which for two dimensions is a well known fundamental solution used in plate
bending, i.e.

v¥ = ﬁ [1n<1) + l:| (2.128)
8n r

and for three dimensions

o L, (2.129)
8n

Notice that for two dimensions v* satisfies Laplace’s equation as follows,

*
Vzv*=12<r§”_>:L1n1=u* (2.130)
ror or 2n r

and for three dimensions one finds that,

10 ov¥ 1
Vzv*:——<r2 ——v—)z——-:u* (2.131)
r? or or dnr

Example 2.6 Results for the Poisson Equation Using Internal Cells

The equation V*u = —2 was solved for the geometry shown in figure 2.22 with
the homogeneous boundary condition # = O and using linear elements.
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Figure 2.22 Elliptical section discretized with Boundary Elements and internal
cells

Notice that the domain has been discretized with a total of 48 internal cells.
Results presented in table A below.demonstrate that the solution is accurate.

Table A Cell results for Poisson Problem

Node X Y Cell Exact
17 1.5 0.0 0.331 0.350
18 1.2 —0.35 0.401 0.414
19 0.6 -0.45 0.557 0.566
20 0.0 —0.45 0.629 0.638
29 0.9 0.0 0.626 0.638
30 0.3 0.0 0.772 0.782
31 0.0 0.0 0.791 0.800

The reader can verify these results by using program POLINBE, after having
added an appropriate subroutine to compute the vectors D as described in the
previous section.

2.13 Orthotropy and Anisotropy

Up to now we have considered problems with isotropic materials, i.e. those for
which the properties are the same in all directions. We will study those materials
for which the properties vary in different directions. If one finds the directions of
orthotropy (figure 2.23) the governing equation for a two dimensional problem
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x2
‘ 3
L
¥1
y1.y2 directions of
orthotropy
nY1 =C0S%
nh=9nz
- X1
Figure 2.23 Orthotropic medium
can be written,
0%u o2u
o trg =0 2.132)
n 0y3

k; is the medium property coefficient in the direction of orthotropy i. For three
dimensional cases the equation is

az 62 62
Ky o ky o 4 ky =
0y1 0y3 0y3

0 (2.133)

The fundamental solution corresponding to the above equations can be found
by transforming the y; system of coordinates into a z; system in which the governing
equations (2.132) or (2.133) become a Laplace equation without the k; coeffi-
cients. This is achieved by using the following transformation,

go= (2.134)

The fundamental solution of the Laplace equation in the z; system is known
and can then be backtransformed to the x; coordinates. This gives for the two
dimensional case the following solution:

u

1
- (2.135)
r

*=¥ln
Vkik;
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where r is now

L 2, o 2 12
r=9—[yi—y1*+—[ys— .l (2.136)
ky ki

where y,, y, are the coordinates of the point under consideration and y!y} are
those of the node on which the fundamental solution is applied.
The corresponding normal flux is
ou* ou*
*—k —n 4k, —n (2.137)
q 1 ayl y1 2 ayz y2

where n,, and n,, are the direction cosines of the normal n to the surface with
respect to y, and y, respectively. Similarly for the actual flux we have

du du
=ky—n, +k, — 2.138
Ty, ™ T gy, @159
For a fully anisotropic media, governing equation (2.132) becomes,
*u o*u 0*u
ki, — +2k +kyy—=0 2.139
Moxt T T oxox, 7 ox @139

where the k;; coefficients represent the terms of the properties tensor. The
fundamental solution can now be expressed

1
27V i |

where 1k; | is the determinant of the medium conductivity and s is the inverse of
the k matrix, ie the resistivity matrix

u* =

1
In- (2.140)
r

1 k -k
ki|=kyikya—kip;s=k 1= | 2 ? 2.141
| JI 11422 12, S lkijl [—ku k;, ( )

The r distance in equation (2.140) is now
r= {5 [x] = X174 28y, [xh — %, 00xh — X201 + 85 [ %5 — %, 1%} 172 (2.142)

The normal flux is

q*=<k gbl—+k12—u—>nx1+<klzi+k22 -“—>n,,2 ©.143)
X

11
04 0%,

and similarly for q.
The fundamental solution for the three dimensional orthotropic case is

1 1
* = 2.144
* 27wV ki kyk, <47r r) ¢ )
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where r is now

1 1. 1
r={— i =] +~[y’z—yz]2+—[y§—y3]2} (2.145)
kl k2 k3

Similar considerations as for two dimensional cases apply for the fluxes ¢* and g.

2.14 Subregions

In certain cases the region under study may be piecewise homogeneous and then
the boundary element procedure can be applied to each subregion in turn as if
they were independent of each other. The final set of equations for the whole region
can then be obtained by assembling the set of equations for each subregion using
compatibility of potentials and fluxes between the common interfaces.

Consider for instance the two subregions shown in figure 2.24 one called Q!
and the other Q2. Over subregion Q' we define,

U!, Q'; Nodal potential and fluxes at the external boundary I'!

Ul, Ql; Nodal potential and fluxes at the interface I considering it
belongs to Q,

34

=2 4

r n
N
n

Figure 2.24 Piecewise homogeneous body consisting of two subregions
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Over the other subregion, Q,, one can define,

U?,Q?; Nodal potential and fluxes at the external boundary I'*

U?, Qf; Nodal potential and fluxes at the interface I} considering it
belongs to Q,.

The system of equations corresponding to Q, can be written as

—— 11 Ql}
H'H =[G'Gj 2.146

and the one for subregion Q, gives

UZ QZ
[H*H{] {Uf} =[G*G{] { le} (2.147)
The compatibility and equilibrium conditions on the interface I, can be expressed as
Ul = U} (2.148)
and
Q/ +Qi=0 (2.149)

If one calls the potentials at the interface U, and adapts on the same interface the
fluxes of Q, as reference values (which is equivalent to say that the normal on the
interface is the normal to €,) one has,

U, =U} =U} (2.150)
and

Q=0Q'=-Qf (2.151)

These conditions can be introduced in equations (2.146) and (2.147) which
can now be written together as follows,

Ul Ql
H!' H' 0 G' G} 0 ]
U = 2.152
[0 H? HZ} ! [0 ~G? G? @ @152)
U2 2
As U,and Q, are unknown at the interface the above system is frequently written as
Ul
1 1 ! 1 8} 1 1
H' H] G| 0] 1 =|:G O:HQ} 2.153)
0 H? G} H2]|Q 0 G*]|Q?

UZ
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Notice that we still have to apply the relevant boundary conditions on the external
surface of the region, i.e. I'! and I'?. It should also be noticed that the matrix on
the left hand side of equation (2.153)is square and that the one on the right hand
side is not.

It is interesting to point out that when more interfaces are included the system
of equations may tend to be banded or have a large number of zero submatrices,
which can result in an 4 matrix which is computationally more efficient. For this
reason most boundary element codes offer nowadays subregions, particularly for
analysing three dimensional problems.

2.15 Helmholtz Equation

Another useful equation in potential problems is the so called Helmholtz or wave
equation. Its time dependent version is

Viu+ A2u=0 in Q (2.154)

where V2 is the two or three dimensional Laplacian and 42 is a positive and known
parameter. Let us consider that the boundary conditions are the normal

(i) Essential conditions u=u onl,
3 . (2.155)
(ii) Natural conditions g=q onl,

Mixed boundary conditions can easly be incorporated in the formulation and are
important in many practical problems. We will however restrict the discussion

now to the above two conditions for simplicity.
The corresponding weighted residual statement for (2.154)and (2.155)is

| (VPu+ 22up* dQ = | (q—qu*dl — | (u—u)g* dl (2.156)
Q 2 I
Integrating twice by parts one obtains.

§ (V2u* + 22u*udQ =~ | qutdl — | qu*dl
I

Q rz
+ [ Gig* dl' + | ug* dU’ (2.157)
I I
or in more compact form

[ (V2u* + 22u*)u dQ = —§ qu* dTl + § ug* dT’ (2.158)
r r

Q
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where ' =T +I5.
The fundamental solution u* for the Helmholtz equation now needs to satisfy

Viu* + A2u* 4+ A; =0 (2.159)
For two dimensions this results in

i

w* = HYG) (2.160)
and
.
q*:aair: ) 2.161)

where r is as usual the distance from the source point to the point under consider-

ation, i =,/ —1, H is the Hankel function of the first kind and zero order and
H" a Hankel function of the first kind and first order, i.e.

HP(Ar) = Jo(Ar) + iYy(Ar) (2.162)
H\V(Ar) = J, (Ar) +iY,(Ar) (2.163)
where J and Y are Bessel functions of first and second kind, with the subscripts

indicating their order.
The three dimensional fundamental solution is

u* = o & (2.164)
and
1 (-1 .
e @2.165)
nr

2.16 Axisymmetric Formulation

A way of dealing with the formulation for axisymmetric problems is by integrating
the three dimensional solution.

Assume first that all boundary values have axial symmetry and consequently
all domain values are axisymmetric. We can write the governing integral equation
(2.42)in terms of the cylindrical polar coordinates (p, 0, Z) given in figure 2.25as,

27 2r
cu+fufg*dopdl=(q [ uxdfpdl (2.166)
PO Fooo :
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where I is the generating body created by the intersection of the three dimensional -
I" surface with the part of the plane defined by p and Z positive.

The three dimensional fundamental solution can be written in cylindrical
coordinates

1 1

u* —————
dnr 4nr(p,0,Z)

(2.167)

and then integrated with respect to 6, which gives the type of ring source solution
required by axisymmetric problems, i.e.

2 4K (m)
f* = | u*df=——"+ 2.168
= = (2.168)
where: mz—gbf O<m<l)
a+b
a=p}+p*+(Z;—2Z); b=2pp (2.169)

n

Figure 2.25 Geometrical definition, generating area and boundary contour of
solid of revolution
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K(m)=is the complete elliptical integral of the first kind.

The subscript ‘i’ refers to the position of the fundamental solution. Notice that
unlike the 2 or 3 dimensional cases, the axisymmetric fundamental solution can
not be written simply as a function of the distance between two points but also
depends on the distance from the source ‘i, the point under consideration to the
axis of revolution.

A different formulation of the axisymmetric problem will be presented in section
3.9 where the elliptical integral is avoided by direct numerical integration of the
three-dimensional fundamental solution.

2.17 Indirect Formulation

Up to now we have been using the so-called direct formulation which is nowadays
the one commonly associated with boundary elements. In the past it was frequent
to associate boundary integral solutions with what is now called the ‘indirect’
approach. In this formulation the boundary solutions are obtained by using sources
or sometimes dipoles and it is interesting to point out that this can be interpreted
as a particular case of the more general direct approach.

Considering for instance the Poisson equation, i.e.

Viu+b=0 in Q (2.170)

The weighted residual formulation applied on (2.170) produces the direct method
integral statement, i.e. for any point in the body.

u' + [ ug* dl = [ u*q dT’ — | bu* dQ (2.171)
r r Q

If we now call the region external to Q by Q' and assume that u’ is the solution
to the Laplace equation, V2’ = 0 within Q', one can write the following statement,

[g*uw dl — [u*q dI' =0 (2.172)
r r

where the point i’ has been assumed as external to Q' (internal to ) and the
tractions q and g* have been referred to the normal n to the internal domain so
that the two values of ¢* in (2.171) and (2.172) become identical. One can now
specify u' as the solution in Q' which generates potentials around I'" identical to
those of our initial problem, in Q, i.e.

u=u onT (2.173)

We can now add equation (2.153) and (2.154) to give

u'— [u*(@—q)dl' + | bu* dQ =0 (2.174)
r Q
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or,

u'= [ u*o dU — | bu* dQ (2.175)
r Q

o =q—q represents the initially unknown density distribution of u* over I
necessary to generate u; through equation (2.175). The physical interpretation of
o is the difference between the fluxes generated by the two solutions (internal and
external).

We can also deduce another ‘indirect’ formulation from the same equations
(2.171)and (2.172). This is the indirect approach in terms of dipoles. Instead of
continuity of potentials between the two fields one can assume continuity of fluxes,
ie.

g—q =0 (2.176)
Then one can subtract the two equations to obtain
w+ [ (u—u)g* dl = — [ bu* dQ (2.177)
r Q

or

u'= [ ug* dI' — | bu* dQ (2.178)
r Q

u=u'—u are called dipoles.

Notice that in order to apply material conditions on I', in both the source or
dipole formulation one needs still to compute the derivatives of (2.175) or (2. 178).
This is rather cumbersome in the dipole formulation as it involves derivatives of
the potential.

2.18 Other Approaches for the Treatment of Domain Integrals

In section 2.12 the case of Poisson’s equation has already been discussed, i.e.
ViZu=b inQ (2.179)

where b is a known function of position.
The boundary integral equation for this case can be expressed as Equation

(2.116), i.e.

cu'+ [ug* dU + | bu* dQ = | qu* dT (2.180)
r o r
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Notice that although the b function is known and the domain integrals do not
introduce any unknowns, solution of (2.180) usually requires the discretization of
the domain into a series of cells. Once this is done one can apply numerical
integration schemes such as Gauss and this results in the following system after
discretization

N N
Y Hw + D=y Gig (2.181)
j=1

j=1

The drawback of that type of solution is that it requires the discretization of the
domain and introduction of further approximations which deteriorates the
accuracy of the method.

It was also mentioned in section 2.11 the possibility of applying a higher order
fundamental solution v* such that

u* = V2pk (2.182)

This effectively allows the integration by parts of the domain term in (2.180) and
writing it in terms of boundary integrals only. The technique was defined as valid
only for the case Vb = 0.

More recently researchers have proposed two new approaches for taking the domain
integrals to the boundary, one based on the generalization concepts described in the
paragraph above and called the Multiple Reciprocity Method [12] and the other
on the idea of using a series of particular solutions and called Dual Reciprocity
Method [13] in the literature. They will be described in the next sections, after
a brief description of the use of particular solutions as an introduction to Dual
Reciprocity.

(i) The Use of Particular Solutions

An obvious way of solving equation (2.180) without dormain integrals is by chang-
ing the variables in such a manner that these integrals disappear. This can be
attempted by adding a particular solution to a new variable.

To illustrate the procedure consider the Poisson equation (2.179) with boundary
conditions such as

Essential conditions g onl,

< "= =T, +T, (2.183)
Natural conditions g=g onl,

Assume now that the potential ¥ can be written as,

W=+ (2.184)
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where 4 is a particular solution of the Poisson equation, such that
Via=b (2.185)
One can now write the domain term in equation (2.180) as follows,

[ bu* dQ = [ (V2R)u* dQ (2.186)
Q Q

Integrating by parts this expression one finds the following relationships,

[ bu* dQ = [ (V2a)u* dQ
Q Q

— [ AVPu*)dQ + [ u* § dT — [ g*a dT (2.187)
Q r r

A

0
where § = a—z

Taking into consideration the special properties of the fundamental solution (see
section 2.2) one can write the right hand side term in (2.187) as follows,

[ bu* dQ = —c'u' + [ u*q dT" — | g*i dT (2.188)
Q r r

Substituting (2.188) into (2.180) one finds the following expression,

¢ + § g*u dl — | qu* dU
r r
(2.189)
=t + | g*i dT — | qu* dT’
r r

Notice that now all integrals need to be computed only on the I' boundary. Equa-
tion (2.189) can also be written in a more compact form as function of the new
variable i, i.e.

¢ + | g*i dT = | qu* dU’ (2.190)
r r

where # = u — i defines the new variable.

The main difficulty with particular solutions is that they are difficult to find in
many cases and cannot usually be applied to time dependent or non-linear
problems.
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Example 2.7

This example describes how to apply particular solutions to the elliptical section
described in example 2.6. (Figure 2.22).

Here the Poisson equation V?u = —2 is solved using the solution procedure
described above. i.e.

u=u6+1a (a)

which is to say that the complete solution u will be expressed as the sum of the
solution to the homogeneous Laplace equation, &, plus a particular solution to the
Poisson equation, #.

The reader can easily see that

d=—-=@x+y? (b)

N | -

is such a solution. Results may now be obtained for the Poisson equation solving
the Laplace equation, using POLIMBE, using the boundary conditions defined by
(b) with a change of sign, in order that when the sum, (a) is carried out the net
result will be the imposition of a homogeneous boundary condition on T'.

The problem geometry will be the same as that used in section 2.12, figure
2.22, but without the internal cells, with which the results of this solution pro-
cedure may be compared.

The solution procedure may easily be understood examining table A

Table A Results for Poisson Problem using Particular Solutions

Node X Y /] /] u=a+14 Cell Exact
17 1.5 0.0 1.473 —1.125 0.348 0.331 0.350,
18 1.2 -0.35 1.200 -0.781 0.419 0.401 0.414
19 0.6 —0.45 0.855 —0.281 0.574 0.557 0.566!
R0 0.0 —-0.45 0.747 -0.101 0.646 0.629 0.638
P9 0.9 0.0 1.049 -0.405 0.644 0.626 0.638
B30 0.3 0.0 0.835 —0.045 0.790 0.772 0.782

1 0.0 0.0 0.808 0.000 0.808 0.791 0.800,

In table A column # is the solution to the Laplace equation with essential boun-
dary conditions defined by equation (b) and with a change of sign. Column 4 is the
result of evaluating (b) for the coordinates of the nodes. u = & + 4 is the sum of
the two and the problem solution. Note that here a domain integral problem has
been solved without the use of internal cells.
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(if) The Dual Reciprocity Method

The Dual Reciprocity Method (DRM) was invented by Nardini and Brebbia [13,
14] in 1982 for the solution of elastodynamic problems. It is essentially a
generalized way of constructing particular solutions and it can be used to represent
internal forces or body force distributions as well as for solving non-linear and
time-dependent problems. The method can be applied to define body force
distribution over the whole domain or only part [15].

It was realized early on that the approach could be used to solve a wide variety
of parabolic as well as hyperbolic time dependent problems [16]. A complete
description of how the method can be applied to vibrations has been presented by
Nardini and Brebbia in reference [17]. The case of transient analysis has been
studied in detail by Brebbia et al. [18—22] including the extension of the tech-
nique to deal with non-linear diffusion problems and axisymmetric problems and
a whole book has been published dealing with the method [23]} and its applica-
tions.

The Dual Reciprocity Method starts by representing any given function b as a
combination of a series of known coordinate functions f’ where f/ = RE,x)isa
function between a point £; and any other point x, o/ are unknown coefficients
associated with each of the f' functions. The f’ are considered to originate at ‘j’
different points, many of them on the boundary (see figure 2.26). These points
are called ‘poles’ and the f’ functions are the same type for all those points. The
form of b is hence as follows,

M
b= ,Z flod (2.191)

M is the number of poles equal to boundary nodes () plus internal nodes (L)
The next stage is to define the particular solution, corresponding to the generic
function f/, i.e.

V2 = fi (2.192)

The #/ field can be found by integrating the above equation. One can then
compute the value of any associated variable such as §/ by differentiating the
particular solution.

Equation (2.180) can now be written as follows,

j=1

vt + § g*u dl — | qg*u* dI' = ~ {ocj § (VA )u* dQ} (2.193)
r r Q

Each term on the right hand side of the above equation can be integrated by
parts resulting in only boundary integrals. (Notice that each ‘j’ term involves a
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particular solution localized at a ‘j’ pole). This gives

' + [ q*u dl — | g*u* dU
r r
M s : N > .
=3 {oc’[c’ﬁ’ + [ g4 dT — [ urg) dl‘]} (2.194)
j=1 r r

This formula has only boundary integrals but the right hand side is not found
by using only one particular solution but by the addition of a series of terms, each
of them representing the effect of a particular solution localized at a ‘j’ pole.

After applying the usual boundary element discretization equation (2.194) gives
rise to the following system,

HU - GQ = [HU - GQl« (2.195)
or simply

HU - GQ = Sa (2.196)
where

S=HU+GQ (2.197)

« Boundary
Nodes

“hil

Figure 2.26 The total number of Poles given by the sum of all Boundary and
Internal Nodes

U and Q are matrices N X M each for the boundary solution. (M is the number
of points where the function ‘j” has been applied or poles; N is the number of boundary
unknowns as usual and L the number of internal nodes. Hence M = N + L). The
columns of these matrices represent the values of the #/ and ¢ functions at the
different nodes for the case of the f’ function acting at a particular ¢’ pole.

Notice that the o coefficients are different from the values of the b function at
the points under consideration. Both are related through equation (2.191), which
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expressed in matrix form gives a M X M matrix F which can be inverted, i.e.
B =Fa« (2.198)

where B vector represents the magnitudes of the b functions at the poles. F is
a matrix whose elements are the values of f at all points for each position ‘j’ of
the function f. Hence one can invert (2.198) to find o vector, i.e.

a=F'B=EB (2.199)

where E = F~!,
Equation (2.196) can now be written as,

HU — GQ = (SE)B (2.200)

The H, G and S matrices are functions of the geometry of the problem, the posi-
tion of nodes and poles, type of interpolation and the #’, §’ fields of the par-
ticular solutions.

Choice of Functions

The most important consideration in the computational implementation of the DRM
is the choice of appropriate interpolation functions f. After a series of numerical
experiments, Brebbia and Nardini [13] [17] proposed using ‘conical’ functions
of the type distance between the points of application of the function £, and any
given point x, such as

fl=r, % (2.201)
This gives a very simple type of &/ function for the Laplace operator, namely,
a/(x) =$ r (2.202)

In addition those authors recommended adding a suitably chosen constant for
completeness, which can then be incorporated through the following function,

f/=1 (or sometimes generalised as f' = 1 + r(¢;, x)) (2.203)
This gives the following particular solution for the Laplace’s equation

Af rz
ai=" (2.204)
4

The introduction of one more unknown will require setting up another equation
in terms of «, which can be done by defining an internal degree of freedom or
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pole. In general the introduction of more degrees of freedom is always recom-
mended to obtain better results when the b function is difficult to represent as a
function of the boundary values only.

Other types of function proposed by Nardini and Brebbia can be seen in
reference [13]. They include localized harmonic functions and polynomials in
terms of the coordinates, but the best results were always reported using ‘conical’
functions.

For axisymmetric cases the solution depends not only on r but also on the
distance from the source and field points to the axis of revolution. Because of this
Wrobel, Telles and Brebbia [22] have proposed the following function,

i R 2.205
P r(l 4R) (2.205)

where R; is the distance from the different poles to the axis of revolution and
R is the distance from any point on I" (or Q) to the same axis. The 4 and ¢ functions
are the same type as for three dimensional analysis.

Example 2.8 Results for Poisson Equation Problem Using Dual Reciprocity
Method [23]

The eliptical section described in figure 2.22 will be solved here again but now
using Dual Reciprocity Methods. The body discretization consists of 16 linear
elements as shown in the figure and the 17 internal nodes will be used as internal
poles.

The results presented in the table A for the twelve poles shown in figure 2.22
describe the complete numerical solution due to symetry. The boundary element
results are rather poor at node 1 due to the coarse discretization used there.
Results obtained in example 2.6 using cells are also included for comparison.

Table A Results for Torsion of Ellipse for Different f functions

Variable [ Node X Y f=r f=1+r | f=1lorr |Cel Exact

q 1 2.0 0.0 —0.680 | —0.680 —0.682 -0.733 [ 0.8
2 1.706 —-0.522 | —1.019| -1.020 —1.024 —1.046 | —1.018
3 1.179 -0.808 | —1.357| —1.359 —1.363 —1.378 | —1.322
4 0.598 -—-0.954 | —1.531| —1.532 -1.536 —1.549 | —1.528
5 0.0 -1.0 —-1.587| —1.588 ~1.592 ~-1.611 | —-1.6

u 17 1.5 0.0 0.349 0.349 0.350 0.331 0.350
18 1.2 —0.35 0.418 0.418 0.418 0.401 0.414
19 0.6 —0.45 0.574 0.573 0.573 0.557 0.566
20 0.0 —-0.45 0.646 0.646 0.646 0.629 0.638
29 0.9 0.0 0.643 0.643 0.643 0.626 0.638
30 03 0.0 0.789 0.789 0.789 0.772 0.782
31 0.0 0.0 0.807 0.807 0.807 0.791 0.800
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For the linear elements employed in the discretization, results using the three
different f functions are seen to be very similar, thus the use of f = 1 + r is recom-
mended as this is the simplest to apply, requiring no special consideration. Note that
the cell collocation results are much less accurate. In table B DRM results are
presented for the same problem with f = 1 + r considering different numbers of
internal nodes.

Table B Results for Torsion Problem for Different Values of L

Variable | Node X Y L=17 |L=13 |L=9 L=5 L=1 Exact

q 1 2.0 0.0 ~-0.680 | —0.678 | —0.677 | —0.676 | —0.666 | —0.8
2 1.706 —0.522 | -1.020| —1.017 | —1.016 | —1.013 [ —0.995 | —1.018
3 1.179 —0.808 | —1.359| —1.357 | —1.354 | —1.349 | —1.325 | —1.322
4 0.598 —-0.954 | —1.532| —1.530 | —1.525| —1.517 | —1.499 | —1.528
5 0.0 —-1.0 ~1.588 | —1.585 | —1.580 | —1.573 | —1.557 | —-1.6

u 31 0.0 0.0 0.807 0.806 0.803 0.798 0.788 0.800

It can be seen that in this case the sensitivity of the results to number of internal
nodes is small. The total variation of results from L = 1 to L = 17 is approxi-
mately 2%.

(iii) The Multiple Reciprocity Method (MRM)

The Multiple Reciprocity Method is a generalization of the Galerkin technique
described in section 2.12 for taking domain integrals to the boundary. It has some
features which are similar to the DRM but instead of approximating the source
terms by a set of coordinate functions it uses a sequence of functions related to
the fundamental solution as will be shown. This sequence forms a set of higher
order fundamental solutions which permits the application of Green’s identity to
each term of the sequence in succession. As a result the method can lead in the
limit to the exact boundary only formulation of the problems.

The MRM was presented in its present form by Nowak and Brebbia [12] [24]
who applied it to solve transient and Helmholtz type problems.

Consider again the case of Poisson’s equation (2.179) but now with a subscript
‘0’ on the right hand side term to differentiate from other similar functions which
will be generated during the solution, i.e.

Viu =b, in Q (2.206)
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where u and b, are the potential and the source functions respectively.
The fundamental solution to Laplace’s equation will also be called with a
subscript ‘o’ for similar reasons as explained above, i.e.

Vi + A =0 (2.207)

Applying reciprocity to the above relations one obtains the same expression as
before i.e. equation (2.180), which is written again below for completeness

v + [ qfudl + { byu¥ dQ = | quy dT (2.208)
r Q r
where g*= du¥/on.

The domain integral in (2.208) can now be transformed into a series of equi-
valent boundary integrals. In order to do this one introduces a new function u}
related to the fundamental solution u¥ by the formula

Vuf = u} (2.209)

Thus the domain integral in (2.208) can be expressed as follows,

| bou¥ dQ = [ b,(VZut)Q
Q Q

*
= | {b,, %”nl —ut ‘Z;} dr + | u} Vb, dQ (2.210)
r Q

As the source function b, is at present assumed to be a known function of
space, one can obtain the function V b, analytically and hence one can define a
new function b, such that

b, = V?b, (2.211)
The domain integral on the right hand side of (2.210) can then be written in a

form which is similar to the one for the previous domain integral and can be
expanded in the same way, i.e.

x 3b
[ byt dQ = | {bl %2- —u -a;‘} dr + [ u(V2b,)dQ (2212)
Q I Q

Notice that one can now compute a b, function such that
b, = V?b, (2.213)

and continue carrying out this procedure as many times as desired.
The procedure can be generalized by introducing two sequences of functions
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defined by the following recurrence formula,

by = Vb,
forj=0,1,2... (2.214)
VZ ]+1 —u

The domain integral can then by expressed as
au;k+ 1

fburd=7y | [b,. 7;— —ufyy %b,f] dr (2.215)
Q r

Introducing (2.215) into the original boundary integral expression one obtains
the exact boundary only formulation of the problems, i.e.

cu' + fugl dU = | qu} dU'
r r

e
r

j=0

(2.216)

The integrals can be evaluated numerically by subdividing the boundary I' into
clements as usual. As the functions b; are known functions of space the integrals
in the summation can be calculated directly. The same type of interpolations used
for u and g can be applied for b;. Thus equation (2.216) can be expressed in
terms of the usual boundary element influence matrices now called H, and G,
plus those matrices resulting from the use of higher order fundamental solutions,
which are defined as H,,; and G;,, =0, 1,2 .. ) ie.

HU-G,Q= Y (H,,,P,— G, R) 2217

j=0

The vectors P; and R; contain the function b; and its normal derivatives respec-
tively at the boundary nodes

Notice that the terms of the series in the right hand side of equation (2.217)
vanish rapidly provided that the problem has been properly scaled, (i.e. all dimen-
sions are divided by the maximum dimension of the problem). It has been shown
that the convergence of the series is very rapid in a variety of practical cases. Fur-
thermore this convergence can be easily calculated since all the terms are known
and the contribution of each of them can be evaluated. It should also be pointed
out that the functions u* have no singularities for j =1, 2 . . . and thus their
integration does not require any special technique.
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Equation (2.217) is solved using standard boundary element subroutines after
taking into consideration the boundary conditions.

Higher Order Fundamental Solutions

The higher order fundamental solutions required here are defined by the recur-
rence formula (2.215). This equation can be easily solved analytically when the
Laplace’s operator is written in terms of a cylindrical (for 2-D problems) or
spherical (for 3-D cases) coordinate system. For example, for 2-D problems the
general form of the function u¥* is given by the following expression,

1 ,
uf = I r(A;Inr — B) (2.218)

where r represents the distance between points. The coefficients 4; and B, are
obtained for the following recurrence relationships

A,
— J
A TR
(2.219)

1 A;
B,,=——-<{—_4+B.
jt1 4(]+1)2 {]+1+ J}

For j =0 one obtains the classical fundamental solution, i.e. 4,=1 and
B, = 0. Notice that formula (2.219) introduce factorials into the denominators of
coefficients 4; and B; and hence guarantee their rapid convergence.
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Exercises
2.1. Verify that the two-dimensional fundamental solution satisfies Laplace’s equation for

2.2,

23.

24.

2.5,

2.6.

27,

any point where r # 0.

The two-dimensional fundamental solution is u* = (1/2x) In(1/r). Since it includes a
logarithm of a non-dimensionless quantity its value depends on the scale. Will this
fact change the solution of a problem depending on its units?

Using program POLINBE, solve the example of the figure with 12 linear elements
and prescribing values of the potential on the whole boundary: linear variation of u
between nodes 1 and 4, u =0 between nodes 4 and 5 linear variation of u between
nodes 5 and 6, u = 100 between nodes 6 and 8, linear variation of u between nodes 8
and 10 and u = 300 between nodes 10 and 1. Check that the results for the fluxes at
the corners are very poor.

N

Solve again the example of 2.3 prescribing values of the potential on the whole
boundary and introducing six new very small elements at the corners in such a way that
the domain has blunt corners. Try several sizes of the corner elements to check the
accuracy of the approximation.

Using program POLINBE, solve again the example of 2.3 with 12 linear elements
and assuming that the values of the potential are known on the whole boundary.
Since the potential is known along two lines merging into each corner, determine the
value of one potential derivative by differences along one of these lines and leave the
other as unknown.

Derive, using the method of images, the fundamental solution for a semi-finite region
with the condition that the potential on the free surface is zero.

The same as 2.6 but with the condition that the flux on the free surface is zero.
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2.8.

29,

2.10,

211,

2.12,

) _ . fourY og*\'
Derive expressions for the derivatives of the fundamental solution <ﬂ—) and (i)
0x, 0x,
which should be used with equation (2.33) to compute internal fluxes.

Write a subroutine (DERINPC) which given an internal point XP, YP, computes
dg*\! Ju*\ .
the integrals | <ni) dl' and | (-u—) dI" along a constant element defined by its
r;

r; \0X; 0x;
extreme points.

Write a subroutine (IFLUXPC) that using DERINPC and the boundary potentials
and fluxes of (FI and DFI) of the program POCONBE computes fluxes at internal
points.

Assume an open channel section that extends from x =0 to x = — 0. At the extreme
x=0 there is a piston that moves harmonically with frequency w. When the
perturbations are small and the fluid is considered to be incompressible with zero
viscosity, the equation that governs the motion is: V?p = 0, p being the pressure, and

3 . . N .
a‘p = pw*u,, where u, is the displacement along the n direction and p the density.
n

Nodes where —_—
a relation .T
between p /
p H ~ -
and o may [ o %
on y
be written A

T

It is known that the solution that satisfies conditions at z=H (p=0) and z=0

op . hid 2n—1
<~IZ:0>, is P(z,x)=) A,cos K,ze"* where K,,=—n-—
1

n (n=1,2,...). In order

0z 2H
to solve a potential problem in a bounded region Q for a prescribed motion of the
piston, an artificial boundary with four constant elements is introduced at X = — X,.

Using as many terms of the series expansion of p(z, x) as nodes exist on the artificial
0
boundary, determine a matrix that relates the nodal values of p and a—p along that
n
boundary (Robin boundary condition).
Compute, using program POCONBE, the warping function of Saint Venant torsion

of a rectangular cross section bar. Use several discretizations to verify the convergency
towards the exact solution. Use symmetry to discretize only one quarter of the section.

Exact:
32a% = —1) 1
uexy-220 5 U 1 Gk XsinhK, Y
7® 4=0 (2n+ 1) cosh Kb
2n+1
= n

n

2a
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2b X

L 28 }
1 1

2.13. Solve the problem of exercise 2.12 using lincar (POLINBE) and quadratic
(POQUABE) elements. Compare the solutions.



