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Summary and objectives 
 
In previous tutorials, we discussed different methods for deriving the displacement fundamental solutions for 
some types of operators. In this tutorial, detailed steps for the derivation of the traction kernels are discussed. 
The traction kernels for the two- and three-dimensional elasticity equations are considered herein; whereas, 
in the next tutorial we will discuss the derivation of the generalized traction kernels for the plate bending 
problem according to the  Riessner theory.  
 
1  The direction of the fundamental load  
Recall tutorial 3, the stress-displacement relationships can be written as follows:  
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Such equations related the stresses to the displacements at a certain point x; therefore equation (1) 
can be re-written as follows: 
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If the same equation will be written to represent the same relationships for the fundamental field, a 
new index j will be introduced to represent the direction of the load at the point ξ: 
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The following notes should be emphasized: 
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1- We introduced the direction of the load as the first index to follow the convention used in 
Primer 3; however it is arbitrary.  

2- It is preferred to introduce the direction of the load as the first index to follow the 
notation of the two-point kernel between ξ and x. 

3- Provided that the stresses in equation (3) represent the fundamental field, the 
corresponding displacements will be the displacement fundamental solution fields. 

4- The distributed loading or any other type of body or domain loading will be not 
considered in the fundamental state as the applied source load will be the only considered 
loading. 

 
Equation (3) will be the basic equation to derive the traction fundamental solution kernels. 
 
2  The two-dimensional problem 
In the two-dimensional case, the following expression for the displacement fundamental kernels 
can be obtained as follows [1]:  
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Taking the derivatives with respect to the field point (recall tutorial 2), we can obtain the 
following derivatives: 
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Interchanging the indices, we get: 
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Putting i=j (as a dummy index), we get: 
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Then: 
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From equation (3), we get: 
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Recall, the traction-stress relationship [1]: 
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Equation (16), represents the final form of the traction fundamental solution kernels for the two-
dimensional case. 
 
3  The three-dimensional problem 
The same steps can be followed to obtain the final form for the traction fundamental solution 
kernels for the three-dimensional case: 
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3  Summary and conclusions 
In this tutorial we discussed in details the algebraic steps for obtaining the traction fundamental 
solution kernels for the two- and the three-dimensional elasticity equations. In the next tutorial we 
will consider the same derivation for plate bending problems. 
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