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Summary and objectives 
 
In this tutorial, we will continue the discussion, started in the tutorial 4, about the derivation of the 
fundamental solutions. In the former tutorial, we presented techniques for setting up the fundamental solution 
for simple and compound operators. Herein, we will discuss the use of operator decoupling technique to 
breakdown matrix operators to simple or compound scalar ones. This method is due to Lars Hörmander [1] 
and it was introduced to the setting up of fundamental solutions within the context of boundary element 
method by Kitahara ( cf. Ref. [2]) and Tosaka (cf.  Ref. [3]). 
 
We will present two examples: elasticity and plate bending problems, to demonstrate the usage of such 
technique.  
 
1  The cofactor matrix  
The understanding of Hörmander method is easy as it is mainly dependant on understanding of simple 
definitions in matrix algebra. In this section we will review some of these basic algebra. Consider the 
following matrix: 
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The cofactor of any element is defined a s follows: 
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Similarly, one can compute:  
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and so on … 
 
The overall matrix, which composed of the cofactor elements, is called the cofactor matrix. The 
same procedures can be done if the matrix [a] has a dimension higher or smaller than 3×3. 
 
2  Hörmander method 
Hörmander method is a method generally used not to derive the fundamental solution but mainly 
to decompose matrix operators to simple scalar operators, which their fundamental solutions can 
be obtained easily (recall Primer 4). Once the fundamental solutions or the scalar potentials for 
these simple operators are obtained, Hörmander technique provides a backward procedure to 
construct the fundamental solution for the original matrix operator. In order to demonstrate the 
general procedures of Hörmander method, consider the following general governing differential 
equation of a certain problem: 
 

bLu =          (5) 
 
where L is matrix-type differential operator, b is the body force vector and u the problem density. 
It is required to set up the fundamental solution U of this problem in order to be used within the 
relevant boundary element formulation. The steps of Hörmander method are as follows: 
 
1- Compute the adjoint operator: Recall tutorial 2, after setting up the boundary integral 

formulation, we need to compute the fundamental solution of the following equation: 
 

δ−=ULadj          (6) 
 
where Ladj is the adjoint operator of the original operator L, δ is the Dirac delta and U is the 
desirable fundamental solution. If the operator Ladj is a simple or compound operator, we can use 
techniques described in tutorial 4 to obtain the fundamental solution. Herein we are going to 
consider Ladj as a matrix operator. 

2- Compute the cofactor matrix of the adjoint operator  using the way described in the 
former section for general matrix. 

adjcoL

3- Compute the transpose of the cofactor matrix ( )Tadjco L  
4- Compute the determinant of the transpose of the cofactor matrix (note that the determinant 

always is an scalar operator): ( )Tadjco Ldet . It has to be noted that the determinant can be 

computed using any known techniques from traditional algebra. However, in many cases, this 
could be achieved easier by computing the scalar multiplication (dot product) of two 



corresponding rows or columns in the matrices of: ( )Tadjco L and the matrix of the original 
operator L. 

5- Compute the scalar potential Φ which is the solution of the following equation: 
 

( ) δ−=Φ
Tadjco Ldet         (7) 

 
It has to be noted that, up to this step, it can be seen that instead of computing the fundamental 
solution for the original operator L, which is difficult, we decomposed this operator to a new 

scalar operator: ( )Tadjco Ldet  which is a simple or compound operator, and can be dealt with 

using the methods presented in tutorial 4. In the next step we will construct the fundamental 
solution U using the obtained scalar potential Φ. 
6- Compute the fundamental solution using the following equation. 
 

          (8) Φ= adjco LU
 
It has to be noted that, the Hörmander method, generally, represents the fundamental solution U as 
vector derivatives of another scalar potential Φ. This could be used in transforming domain 
integrals to the boundary as will be discussed in later tutorials. 
 
3  Example to elasticity  
In this section we will be presenting the derivation of the elasticity fundamental solution using the 
Hörmander technique. Consider the following Navier governing differential equations [4]: 
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which represents the original differential operator of the problem. G denotes the modulus of 
rigidity and ν is the Poisson’s ratio. This operator is a self-adjoint operator; therefore: 
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Following Hörmander, the cofactor matrix of the adjoint operator can be obtained as follows [5]: 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂∂
ν−

+∇∂∂
ν−

−

∂∂
ν−

−∂∂
ν−

+∇
=

11
2

21

1222
2

adjco

21
GG

21
G

21
G

21
GG

L     (13) 

 
which can be written, in an indicial notation as follows: 
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The transpose of the cofactor matrix can be written as follows: 
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and its relevant determinant can be computed as follows:   
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noting that: 
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and 
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Then one can equation (16) as: 

( ) 4
2Tadj

ij
co

21
)1(G2Ldet ∇

ν−
ν−

=       (19) 

 
According to Hörmander, we need to obtain a suitable scalar potential Φ that satisfies the 
following equation: 
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A suitable singular particular solution can be obtained as follows (Recall tutorial 4): 
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where: 
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in which, a,b,c are arbitrary constants. It has to be noted that Φ, herein, represents the well-known 
Galerkin tensor [4] and f is just a complementary solution for the bi-harmonic operator, which can 
be omitted by setting all constants to be zeros. From the last step of Hörmander method, one can 
write the fundamental solution as follows (see equation (8)):  
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The corresponding derivatives of Φ and f are: 
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Substituting in equation (23), one can get: 
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where: 
 

⎭
⎬
⎫

⎩
⎨
⎧

+⎥⎦
⎤

⎢⎣
⎡ ν−+

ν−
δ−

ν−π
= jiij

)1(
ij ,r,rrln)43(

2
87

)1(G8
1U    (28) 

 
and 
 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧ +δ−δν−

ν−
= jiij2ij

)2(
ij ,r,r2

r
b)43(a2

21
GU     (29) 

 



 
If a and b are chosen to be: 
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the well-know Kelvin fundamental solution expressions can be obtained as follows [4]: 
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4  Example to plates in bending 
1- The original operator of the problem is given as [6]: 
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          (32) 
where D is the plate modulus and λ is the shear factor.     
2- The adjoint operator can be obtained as follows. Noting that this operator is not a self-adjoint 

operator: 
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          (33) 
3- The elements of the cofactor matrix of the Ladj can be computed as follows [7]: 
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Then the coLadj can be written as: 
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which can be re-written in indicial notation as follows [7]: 
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4- The determinant of the transpose of the cofactor matrix can be computed using the 

multiplication of two corresponding rows or columns in the matrices. For example, if the 
multiplications of the two second rows is considered, it gives: 
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It has to be noted that the same results can be obtained if the two first rows or the two first 
columns are considered instead. Recalling equation (7), we seek the fundamental solution of the 
scalar potential Φ, which is the solution of the following equation: 
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A suitable singular particular solution can be obtained using the partial fraction analogy (Recall 
tutorial 4) as follows [6]: 
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in which K0 is a modified Bessel function. 
5- The final fundamental solution of the problem can be obtained using equation (8) as follows: 
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where  
 

⎥⎦
⎤

⎢⎣
⎡

λ
−λ

λ
+λ=λ

r
1)r(K

r
2)r(K)r(A 10       (55) 

⎥⎦
⎤

⎢⎣
⎡

λ
−λ

λ
+λ=λ

r
1)r(K

r
1)r(K)r(B 10        (56) 

 



5  Conclusions 
In this tutorial, we have presented how to use the Hörmander technique in decomposing matrix 
operators to simple scalar operators. Two examples were presented, one for the elasticity problem 
and the other for plates in bending. In the next tutorials we will discuss in details the relevant 
algebra that used to obtain the final form of the fundamental solutions. Also the derivation of the 
corresponding traction kernels will be also discussed. 
 
6  Solution of the exercise in tutorial 4 
6.1 Exercise 1 

The solution of this exercise is give in Ref. [8] page 370. 
 
6.2 Exercise 2 

The fundamental solution U of the following equation: 
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can be easily obtained using partial fraction analogy as follows: 
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which is similar to what we did in equation (50). 
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